Autoware项目中TensorRT安装问题的解决方案
问题背景
在构建Autoware项目时,很多开发者会遇到TensorRT相关库无法找到的问题,特别是在使用非deb包方式安装CUDA、cuDNN和TensorRT时。这个问题会导致编译过程中出现"stderr: autoware_tensorrt_common"错误,影响项目的正常构建。
问题现象
当开发者使用tar包方式安装TensorRT时,即使正确设置了LD_LIBRARY_PATH环境变量,Autoware项目在编译时仍然会报告TensorRT库找不到的错误。具体表现为:
- CMake警告显示"cuda, cudnn, tensorrt libraries are not found"
- 编译总结中显示多个包出现stderr输出
- 检查CMakeLists.txt中的TENSORRT_FOUND变量始终为false
根本原因分析
Autoware项目在查找TensorRT库时,不仅依赖LD_LIBRARY_PATH环境变量,还需要知道TensorRT的根安装目录。当使用deb包安装时,系统会自动配置这些路径,但使用tar包手动安装时,需要额外设置TENSORRT_ROOT环境变量。
解决方案
对于使用tar包安装TensorRT的用户,需要执行以下步骤:
-
确保TensorRT已正确安装到指定目录(如/opt/TensorRT-8.6.1.6)
-
设置LD_LIBRARY_PATH环境变量:
export LD_LIBRARY_PATH=/opt/TensorRT-8.6.1.6/lib:$LD_LIBRARY_PATH
-
关键步骤:设置TENSORRT_ROOT环境变量:
export TENSORRT_ROOT=/opt/TensorRT-8.6.1.6
请将路径替换为实际的TensorRT安装路径
-
将这些设置添加到.bashrc或.zshrc文件中以永久生效
版本兼容性建议
虽然上述解决方案适用于大多数情况,但为了获得最佳兼容性,建议:
- 使用Autoware官方推荐的CUDA 12.3版本
- 确保TensorRT版本与CUDA版本匹配
- 考虑使用官方提供的Docker容器环境,可以避免复杂的依赖配置问题
验证方法
安装完成后,可以通过以下方式验证TensorRT是否被正确识别:
- 修改Autoware的CMakeLists.txt文件,添加对CUDAToolkit_FOUND、CUDNN_FOUND和TENSORRT_FOUND变量的输出
- 重新运行CMake配置,检查这三个变量是否都为TRUE
- 如果仍有问题,检查环境变量设置是否正确,以及TensorRT安装是否完整
总结
在Autoware项目中使用tar包安装TensorRT时,除了常规的LD_LIBRARY_PATH设置外,必须额外配置TENSORRT_ROOT环境变量。这一步骤对于确保项目能够正确找到TensorRT库至关重要。通过遵循上述解决方案,开发者可以成功解决TensorRT库找不到的问题,顺利完成Autoware项目的构建。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~045CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









