Autoware项目中TensorRT安装问题的解决方案
问题背景
在构建Autoware项目时,很多开发者会遇到TensorRT相关库无法找到的问题,特别是在使用非deb包方式安装CUDA、cuDNN和TensorRT时。这个问题会导致编译过程中出现"stderr: autoware_tensorrt_common"错误,影响项目的正常构建。
问题现象
当开发者使用tar包方式安装TensorRT时,即使正确设置了LD_LIBRARY_PATH环境变量,Autoware项目在编译时仍然会报告TensorRT库找不到的错误。具体表现为:
- CMake警告显示"cuda, cudnn, tensorrt libraries are not found"
- 编译总结中显示多个包出现stderr输出
- 检查CMakeLists.txt中的TENSORRT_FOUND变量始终为false
根本原因分析
Autoware项目在查找TensorRT库时,不仅依赖LD_LIBRARY_PATH环境变量,还需要知道TensorRT的根安装目录。当使用deb包安装时,系统会自动配置这些路径,但使用tar包手动安装时,需要额外设置TENSORRT_ROOT环境变量。
解决方案
对于使用tar包安装TensorRT的用户,需要执行以下步骤:
-
确保TensorRT已正确安装到指定目录(如/opt/TensorRT-8.6.1.6)
-
设置LD_LIBRARY_PATH环境变量:
export LD_LIBRARY_PATH=/opt/TensorRT-8.6.1.6/lib:$LD_LIBRARY_PATH -
关键步骤:设置TENSORRT_ROOT环境变量:
export TENSORRT_ROOT=/opt/TensorRT-8.6.1.6请将路径替换为实际的TensorRT安装路径
-
将这些设置添加到.bashrc或.zshrc文件中以永久生效
版本兼容性建议
虽然上述解决方案适用于大多数情况,但为了获得最佳兼容性,建议:
- 使用Autoware官方推荐的CUDA 12.3版本
- 确保TensorRT版本与CUDA版本匹配
- 考虑使用官方提供的Docker容器环境,可以避免复杂的依赖配置问题
验证方法
安装完成后,可以通过以下方式验证TensorRT是否被正确识别:
- 修改Autoware的CMakeLists.txt文件,添加对CUDAToolkit_FOUND、CUDNN_FOUND和TENSORRT_FOUND变量的输出
- 重新运行CMake配置,检查这三个变量是否都为TRUE
- 如果仍有问题,检查环境变量设置是否正确,以及TensorRT安装是否完整
总结
在Autoware项目中使用tar包安装TensorRT时,除了常规的LD_LIBRARY_PATH设置外,必须额外配置TENSORRT_ROOT环境变量。这一步骤对于确保项目能够正确找到TensorRT库至关重要。通过遵循上述解决方案,开发者可以成功解决TensorRT库找不到的问题,顺利完成Autoware项目的构建。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00