Google Research 的 Ravens 项目安装与使用指南
2024-09-27 07:57:43作者:劳婵绚Shirley
项目概述
Google Research 的 Ravens 是一个基于 PyBullet 的仿真任务集合,专为学习基于视觉的机器人操纵设计,尤其是拣选与放置操作。它提供了类似Gym的API,包含10项桌面排列任务,支持从模仿学习(通过专家演示)到强化学习(部分分数奖励)的训练。项目的核心是Transporter Networks,一种能够仅依赖于视觉输入推断空间位移的简单模型架构。
目录结构及介绍
下面是Ravens项目的典型目录结构及其简要说明:
ravens/
├── docs # 文档资料
├── oss_scripts # 辅助脚本,如环境设置脚本
├── ravens # 主项目代码
│ ├── __init__.py # 包初始化文件
│ ├── ...
├── .gitignore # Git忽略文件列表
├── LICENSE # 许可证文件,遵循Apache-2.0许可
├── README.md # 项目说明文档
├── requirements.txt # 必需的Python包列表
├── setup.py # 安装脚本
└── ...
ravens: 存放主要的源代码,包括任务定义、代理(agent)逻辑等。docs: 文档相关资料存放处。oss_scripts: 提供了系统配置和辅助安装脚本。.gitignore,LICENSE,README.md,requirements.txt, 和setup.py是标准的开源项目组件,分别用于Git忽略规则、许可证声明、项目简介、依赖列表和安装脚本。
项目的启动文件介绍
项目的主要启动入口并不直接以一个特定的“启动文件”呈现,而是通过命令行界面结合不同的Python脚本来执行任务。以下是一些关键的脚本示例:
ravens/demos.py: 用于生成训练和测试数据。通过调整参数,你可以指定任务、显示模式、数据集类型等。ravens/train.py: 这个脚本用于训练模型,接收任务名称、使用的代理类型以及演示数据数量作为参数。ravens/test.py: 在训练完成后,使用这个脚本评估模型。它允许你指定同样的任务信息,加上额外的步骤数或模型路径来加载已训练好的模型。ravens/plot.py: 用于可视化和打印训练结果,帮助分析模型性能。
项目的配置文件介绍
Ravens项目没有明确提到单独的配置文件路径,但它的配置主要是通过调用脚本时传递的参数进行管理的。例如,在train.py和test.py中,可以通过命令行参数来设定任务类型(--task)、使用的代理(--agent)、示范数据量(--n_demos)等。此外,虽然没有传统意义上的.yaml或.json配置文件,但requirements.txt可以视为项目运行的基础配置文件,列出了所有必需的Python库版本。
在实际应用中,根据具体需求,开发者可能会创建自己的脚本或配置文件来封装这些命令行参数,以实现更灵活的配置和定制化功能。然而,对于基础使用,遵循提供的脚本和它们接受的参数即可进行项目的配置与运行。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
260
92
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255