Google Research 的 Ravens 项目安装与使用指南
2024-09-27 23:57:40作者:劳婵绚Shirley
项目概述
Google Research 的 Ravens 是一个基于 PyBullet 的仿真任务集合,专为学习基于视觉的机器人操纵设计,尤其是拣选与放置操作。它提供了类似Gym的API,包含10项桌面排列任务,支持从模仿学习(通过专家演示)到强化学习(部分分数奖励)的训练。项目的核心是Transporter Networks,一种能够仅依赖于视觉输入推断空间位移的简单模型架构。
目录结构及介绍
下面是Ravens项目的典型目录结构及其简要说明:
ravens/
├── docs # 文档资料
├── oss_scripts # 辅助脚本,如环境设置脚本
├── ravens # 主项目代码
│ ├── __init__.py # 包初始化文件
│ ├── ...
├── .gitignore # Git忽略文件列表
├── LICENSE # 许可证文件,遵循Apache-2.0许可
├── README.md # 项目说明文档
├── requirements.txt # 必需的Python包列表
├── setup.py # 安装脚本
└── ...
ravens: 存放主要的源代码,包括任务定义、代理(agent)逻辑等。docs: 文档相关资料存放处。oss_scripts: 提供了系统配置和辅助安装脚本。.gitignore,LICENSE,README.md,requirements.txt, 和setup.py是标准的开源项目组件,分别用于Git忽略规则、许可证声明、项目简介、依赖列表和安装脚本。
项目的启动文件介绍
项目的主要启动入口并不直接以一个特定的“启动文件”呈现,而是通过命令行界面结合不同的Python脚本来执行任务。以下是一些关键的脚本示例:
ravens/demos.py: 用于生成训练和测试数据。通过调整参数,你可以指定任务、显示模式、数据集类型等。ravens/train.py: 这个脚本用于训练模型,接收任务名称、使用的代理类型以及演示数据数量作为参数。ravens/test.py: 在训练完成后,使用这个脚本评估模型。它允许你指定同样的任务信息,加上额外的步骤数或模型路径来加载已训练好的模型。ravens/plot.py: 用于可视化和打印训练结果,帮助分析模型性能。
项目的配置文件介绍
Ravens项目没有明确提到单独的配置文件路径,但它的配置主要是通过调用脚本时传递的参数进行管理的。例如,在train.py和test.py中,可以通过命令行参数来设定任务类型(--task)、使用的代理(--agent)、示范数据量(--n_demos)等。此外,虽然没有传统意义上的.yaml或.json配置文件,但requirements.txt可以视为项目运行的基础配置文件,列出了所有必需的Python库版本。
在实际应用中,根据具体需求,开发者可能会创建自己的脚本或配置文件来封装这些命令行参数,以实现更灵活的配置和定制化功能。然而,对于基础使用,遵循提供的脚本和它们接受的参数即可进行项目的配置与运行。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328