Harvester 集群在离线环境下镜像上传与下载问题的技术分析
问题背景
在离线环境(Harvester air-gapped cluster)中,用户尝试通过文件上传或内部URL下载方式创建虚拟机镜像时遇到了操作失败的问题。系统提示的错误信息表明BackingImage资源创建时出现了数据引擎类型未指定的问题。
问题现象
当用户在离线Harvester集群中执行以下操作时均会失败:
- 通过本地文件上传方式创建镜像
- 通过内部可访问URL下载方式创建镜像
系统返回的错误信息为:
Retry attempted 3/3 failed due to error: BackingImage.longhorn.io "vmi-2618f2cc-546a-4147-85ed-a33282cd9bc8" is invalid: spec.dataEngine: Unsupported value: "": supported values: "v1", "v2"
根本原因分析
经过深入排查,发现问题源于Longhorn组件的镜像版本不匹配。具体表现为:
-
镜像拉取失败:Longhorn的核心组件(包括manager、share-manager和UI)在离线环境中无法正常启动,处于ImagePullBackOff状态。
-
版本不一致:ISO打包时使用的是v1.8.x-head版本的Longhorn镜像,而系统实际尝试拉取的是v1.8.0版本的镜像,导致组件无法正常运行。
-
Mutator功能失效:由于Longhorn manager未能正常运行,导致BackingImage资源的mutator功能失效,无法为dataEngine字段设置默认值"v1"。
解决方案
要解决此问题,需要确保离线环境中部署正确的Longhorn镜像版本。具体措施包括:
-
手动部署正确镜像:将v1.8.0版本的Longhorn相关镜像手动部署到离线环境中。
-
版本一致性检查:确保Harvester ISO中打包的Longhorn镜像版本与实际需求版本一致。
-
组件状态验证:部署后验证Longhorn各组件的运行状态,特别是manager组件的功能是否正常。
技术细节补充
BackingImage是Longhorn中用于存储基础镜像数据的自定义资源。当创建虚拟机镜像时,Harvester会通过Longhorn创建相应的BackingImage资源。正常情况下,Longhorn manager的mutator webhook会自动为BackingImage的dataEngine字段设置默认值"v1"。
在离线环境问题场景中,由于manager组件未能正常运行,这个自动化过程失效,导致BackingImage创建时缺乏必要的dataEngine字段值,进而引发操作失败。
经验总结
离线环境部署需要特别注意组件镜像的版本管理和依赖关系。对于像Harvester这样集成了多个组件的系统,确保各组件版本兼容性尤为重要。建议在离线环境部署前:
- 完整验证各组件镜像的可用性
- 建立完善的镜像版本管理机制
- 设计完备的离线部署检查清单
通过系统性的预防措施,可以有效避免类似问题的发生,确保离线环境部署的稳定性和可靠性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00