Harvester 集群在离线环境下镜像上传与下载问题的技术分析
问题背景
在离线环境(Harvester air-gapped cluster)中,用户尝试通过文件上传或内部URL下载方式创建虚拟机镜像时遇到了操作失败的问题。系统提示的错误信息表明BackingImage资源创建时出现了数据引擎类型未指定的问题。
问题现象
当用户在离线Harvester集群中执行以下操作时均会失败:
- 通过本地文件上传方式创建镜像
- 通过内部可访问URL下载方式创建镜像
系统返回的错误信息为:
Retry attempted 3/3 failed due to error: BackingImage.longhorn.io "vmi-2618f2cc-546a-4147-85ed-a33282cd9bc8" is invalid: spec.dataEngine: Unsupported value: "": supported values: "v1", "v2"
根本原因分析
经过深入排查,发现问题源于Longhorn组件的镜像版本不匹配。具体表现为:
-
镜像拉取失败:Longhorn的核心组件(包括manager、share-manager和UI)在离线环境中无法正常启动,处于ImagePullBackOff状态。
-
版本不一致:ISO打包时使用的是v1.8.x-head版本的Longhorn镜像,而系统实际尝试拉取的是v1.8.0版本的镜像,导致组件无法正常运行。
-
Mutator功能失效:由于Longhorn manager未能正常运行,导致BackingImage资源的mutator功能失效,无法为dataEngine字段设置默认值"v1"。
解决方案
要解决此问题,需要确保离线环境中部署正确的Longhorn镜像版本。具体措施包括:
-
手动部署正确镜像:将v1.8.0版本的Longhorn相关镜像手动部署到离线环境中。
-
版本一致性检查:确保Harvester ISO中打包的Longhorn镜像版本与实际需求版本一致。
-
组件状态验证:部署后验证Longhorn各组件的运行状态,特别是manager组件的功能是否正常。
技术细节补充
BackingImage是Longhorn中用于存储基础镜像数据的自定义资源。当创建虚拟机镜像时,Harvester会通过Longhorn创建相应的BackingImage资源。正常情况下,Longhorn manager的mutator webhook会自动为BackingImage的dataEngine字段设置默认值"v1"。
在离线环境问题场景中,由于manager组件未能正常运行,这个自动化过程失效,导致BackingImage创建时缺乏必要的dataEngine字段值,进而引发操作失败。
经验总结
离线环境部署需要特别注意组件镜像的版本管理和依赖关系。对于像Harvester这样集成了多个组件的系统,确保各组件版本兼容性尤为重要。建议在离线环境部署前:
- 完整验证各组件镜像的可用性
- 建立完善的镜像版本管理机制
- 设计完备的离线部署检查清单
通过系统性的预防措施,可以有效避免类似问题的发生,确保离线环境部署的稳定性和可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00