在Docsify中实现动态权限控制侧边栏的技术方案
2025-05-05 14:07:58作者:彭桢灵Jeremy
背景介绍
Docsify是一个基于Markdown的文档网站生成工具,它能够实时将Markdown文件转换为网页内容。在实际企业应用中,我们经常需要根据用户权限动态显示不同的侧边栏内容。本文探讨如何在Docsify中实现这一功能。
问题分析
用户尝试通过以下方式实现动态侧边栏:
- 从URL中获取token参数
- 使用Vue的data属性定义myRouter数组
- 在created生命周期中调用API获取路由数据
- 在_sidebar.md文件中使用Vue插值语法显示路由
但发现Vue插值语法在_sidebar.md中无法正常工作,导致动态内容无法显示。
技术原理
Docsify的工作流程分为两个阶段:
- 将Markdown文件转换为HTML
- 应用Vue.js进行前端交互
_sidebar.md文件在第一个阶段就被处理,此时Vue实例尚未初始化,因此Vue插值语法无法生效。
解决方案
方案一:使用Docsify插件
可以通过编写Docsify插件,在页面加载完成后动态修改侧边栏内容:
window.$docsify = {
plugins: [
function(hook) {
hook.ready(function() {
// 获取token
const token = new URLSearchParams(window.location.hash.substr(1)).get('token');
// 调用API获取路由数据
fetch(`http://localhost:8080/getRouterByToken?token=${token}`)
.then(response => response.json())
.then(data => {
// 动态生成侧边栏内容
const sidebar = document.querySelector('.sidebar-nav');
data.forEach(route => {
const link = document.createElement('a');
link.href = route.path;
link.textContent = route.name;
sidebar.appendChild(link);
});
});
});
}
]
};
方案二:预生成侧边栏
在服务端预生成包含权限控制的_sidebar.md文件:
- 用户访问时携带token
- 服务端根据token生成对应的侧边栏Markdown
- 返回给客户端显示
这种方法需要后端配合,但实现起来更直接。
方案三:混合使用Vue组件
在index.html中定义Vue组件来渲染侧边栏:
<div id="app">
<my-sidebar></my-sidebar>
<div id="main-content"></div>
</div>
<script></script>
最佳实践建议
- 对于简单的权限控制,推荐使用Docsify插件方案
- 对于复杂的权限系统,建议采用服务端预生成方案
- 确保API调用有适当的错误处理和加载状态显示
- 考虑使用本地存储缓存路由数据,减少API调用
性能优化
- 对路由数据进行压缩,减少传输量
- 实现客户端缓存机制
- 使用Web Worker处理大量路由数据的渲染
- 考虑实现虚拟滚动技术处理超长侧边栏
安全考虑
- 确保token传输使用HTTPS
- 实现token过期机制
- 对API调用进行限流
- 考虑使用JWT等标准认证方案
通过以上方案,可以在Docsify中实现灵活、安全的动态权限控制侧边栏,满足企业级应用的需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218