ElasticsearchAnalysisLemmatizer开源项目最佳实践
2025-05-15 20:23:14作者:卓炯娓
1. 项目介绍
ElasticsearchAnalysisLemmatizer 是一个基于 Elasticsearch 的插件,它提供了对文本进行词形还原(Lemmatization)的功能。词形还原是一种文本处理技术,它将词汇还原到基本形式,以消除词汇的多样性带来的影响,提高搜索的准确性和相关性。
2. 项目快速启动
要快速启动并使用ElasticsearchAnalysisLemmatizer,请按照以下步骤操作:
首先,确保你已经安装了Elasticsearch。
然后,克隆项目仓库:
git clone https://github.com/vhyza/elasticsearch-analysis-lemmagen.git
接下来,进入项目目录并编译插件:
cd elasticsearch-analysis-lemmagen
mvn clean install
编译完成后,将生成的插件 jar 文件复制到 Elasticsearch 的插件目录:
cp target/elasticsearch-analysis-lemmagen-版本号.jar $ES_HOME/plugins/analysis-lemmagen/
替换 $ES_HOME 为你的 Elasticsearch 安装路径,并且确保版本号与你的 Elasticsearch 版本相匹配。
最后,在 Elasticsearch 的配置文件 elasticsearch.yml 中添加以下配置:
plugins:
- name: analysis-lemmagen
description: Elasticsearch Analysis Lemmagen Plugin
site: false
version: 版本号
java_home: $JAVA_HOME
classpath: ["$ES_HOME/plugins/analysis-lemmagen/*"]
再次替换版本号和 $JAVA_HOME 为相应的值。
重启 Elasticsearch 服务以应用插件。
3. 应用案例和最佳实践
以下是一个简单的使用ElasticsearchAnalysisLemmatizer的例子:
PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_lemmatizer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase", "lemmatization"]
}
},
"filter": {
"lemmatization": {
"type": "lemmatizer",
"name": "lemmatizer",
"dictionary": "path/to/dictionary.txt"
}
}
}
}
}
在这个例子中,我们创建了一个自定义分析器 my_lemmatizer,它使用标准分词器,并包含小写和词形还原过滤器。lemmatization 过滤器需要一个词典文件,你需要提供自己的词典文件或使用项目提供的默认词典。
4. 典型生态项目
ElasticsearchAnalysisLemmatizer 可以与其他多个开源项目配合使用,以下是一些典型的生态项目:
- Elasticsearch:Elasticsearch 是一个分布式、RESTful 搜索和分析引擎,适用于处理大量的数据。
- Kibana:Kibana 是一个开源的数据可视化和分析工具,它与 Elasticsearch 一起工作,提供了用于图形化您的Elasticsearch数据的界面。
- Logstash:Logstash 是一个开源的数据收集、处理和转发工具,它可以灵活地处理来自不同来源的数据,并将数据转发到你的Elasticsearch集群。
通过结合这些工具,您可以构建强大的数据搜索和分析管道。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
基于MC1496的鉴相器资源文件介绍:一款强大的电子电路工具 macOS安装python3.8:轻松掌握Python环境配置【亲测免费】 YOLOv8系列--AI自瞄项目:实现高效目标检测的利器 BT1120规范资源下载介绍:数字视频信号传输的关键标准 sockperf网络测试工具及使用方法下载仓库 探索renren-fast2.1与renren-security3.2:轻量级权限管理系统的卓越之选 商用车智能底盘技术路线图 Linux服务器TDSQL单机安装指南:轻松部署高效数据库 SAP中文标准教材汇总资源下载说明 AUTOSAR_SWS_E2ELibrary资源文件介绍:汽车行业E2E通信标准化解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134