ElasticsearchAnalysisLemmatizer开源项目最佳实践
2025-05-15 20:23:14作者:卓炯娓
1. 项目介绍
ElasticsearchAnalysisLemmatizer 是一个基于 Elasticsearch 的插件,它提供了对文本进行词形还原(Lemmatization)的功能。词形还原是一种文本处理技术,它将词汇还原到基本形式,以消除词汇的多样性带来的影响,提高搜索的准确性和相关性。
2. 项目快速启动
要快速启动并使用ElasticsearchAnalysisLemmatizer,请按照以下步骤操作:
首先,确保你已经安装了Elasticsearch。
然后,克隆项目仓库:
git clone https://github.com/vhyza/elasticsearch-analysis-lemmagen.git
接下来,进入项目目录并编译插件:
cd elasticsearch-analysis-lemmagen
mvn clean install
编译完成后,将生成的插件 jar 文件复制到 Elasticsearch 的插件目录:
cp target/elasticsearch-analysis-lemmagen-版本号.jar $ES_HOME/plugins/analysis-lemmagen/
替换 $ES_HOME 为你的 Elasticsearch 安装路径,并且确保版本号与你的 Elasticsearch 版本相匹配。
最后,在 Elasticsearch 的配置文件 elasticsearch.yml 中添加以下配置:
plugins:
- name: analysis-lemmagen
description: Elasticsearch Analysis Lemmagen Plugin
site: false
version: 版本号
java_home: $JAVA_HOME
classpath: ["$ES_HOME/plugins/analysis-lemmagen/*"]
再次替换版本号和 $JAVA_HOME 为相应的值。
重启 Elasticsearch 服务以应用插件。
3. 应用案例和最佳实践
以下是一个简单的使用ElasticsearchAnalysisLemmatizer的例子:
PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"my_lemmatizer": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase", "lemmatization"]
}
},
"filter": {
"lemmatization": {
"type": "lemmatizer",
"name": "lemmatizer",
"dictionary": "path/to/dictionary.txt"
}
}
}
}
}
在这个例子中,我们创建了一个自定义分析器 my_lemmatizer,它使用标准分词器,并包含小写和词形还原过滤器。lemmatization 过滤器需要一个词典文件,你需要提供自己的词典文件或使用项目提供的默认词典。
4. 典型生态项目
ElasticsearchAnalysisLemmatizer 可以与其他多个开源项目配合使用,以下是一些典型的生态项目:
- Elasticsearch:Elasticsearch 是一个分布式、RESTful 搜索和分析引擎,适用于处理大量的数据。
- Kibana:Kibana 是一个开源的数据可视化和分析工具,它与 Elasticsearch 一起工作,提供了用于图形化您的Elasticsearch数据的界面。
- Logstash:Logstash 是一个开源的数据收集、处理和转发工具,它可以灵活地处理来自不同来源的数据,并将数据转发到你的Elasticsearch集群。
通过结合这些工具,您可以构建强大的数据搜索和分析管道。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759