在springdoc-openapi中自定义端点描述以展示权限信息
概述
在现代API开发中,权限控制是一个关键的安全特性。开发者通常会在API端点方法上使用自定义注解来声明所需的权限。本文将介绍如何在springdoc-openapi项目中,将这些权限信息自动集成到生成的OpenAPI文档中,使API消费者能够清晰地了解每个端点所需的权限。
背景知识
springdoc-openapi是一个流行的Java库,它能够自动从Spring Boot应用中生成OpenAPI 3.0规范文档。默认情况下,它会扫描Spring MVC控制器并生成相应的API文档,包括路径、参数、响应等信息。
在实际开发中,我们经常使用自定义注解来标记API端点所需的权限,例如:
@GetMapping("/{branchId}")
@Permission(PermissionType.P_BRANCH_R)
public Branch getBranch(@PathVariable BranchId branchId) {
return branchService.getBranch(branchId);
}
解决方案
springdoc-openapi提供了强大的扩展机制,允许开发者自定义生成的OpenAPI文档。我们可以利用GlobalOperationCustomizer接口来增强操作(operation)的描述信息,将权限注解的内容包含进去。
实现步骤
-
创建自定义配置类:在Spring配置中定义一个bean,实现
GlobalOperationCustomizer接口。 -
处理权限注解:在自定义逻辑中检查方法上的
@Permission注解。 -
增强描述信息:将权限信息添加到操作描述中,同时保留原有的描述内容。
以下是完整的实现代码:
@Bean
public GlobalOperationCustomizer operationCustomizer() {
return (operation, handlerMethod) -> {
Optional.ofNullable(handlerMethod.getMethodAnnotation(Permission.class))
.ifPresent(permissionAnnotation -> {
operation.setDescription(
Optional.ofNullable(operation.getDescription())
.map(description -> description + "\n\n")
.orElse("")
+ "Permission required: "
+ permissionAnnotation.value().name());
});
return operation;
};
}
代码解析
-
GlobalOperationCustomizer:这是springdoc-openapi提供的接口,允许我们对每个API操作进行自定义处理。
-
handlerMethod:提供了对控制器方法的访问,我们可以从中获取方法上的注解。
-
Optional处理:使用Java 8的Optional来优雅地处理可能为null的描述字段。
-
描述拼接:新添加的权限信息会追加到原有描述之后,两者之间用两个换行符分隔,确保格式清晰。
效果展示
应用上述配置后,生成的OpenAPI文档将包含权限信息。例如,对于前面提到的getBranch端点,文档可能如下所示:
{
"paths": {
"/api/branches/{branchId}": {
"get": {
"description": "获取指定ID的分支信息\n\nPermission required: P_BRANCH_R",
// 其他字段...
}
}
}
}
进阶应用
这种技术不仅限于权限信息的展示,还可以扩展到其他类型的元数据:
- 审计信息:添加端点创建者或最后修改时间
- 业务分类:标记端点所属的业务领域
- 性能提示:添加预期的响应时间或吞吐量信息
- 多语言支持:根据请求头中的Accept-Language提供不同语言的描述
最佳实践
- 保持一致性:确保所有端点的权限信息都采用相同的格式展示
- 避免信息过载:只添加真正对API消费者有价值的信息
- 考虑安全性:确保公开的文档不会泄露敏感信息
- 自动化测试:验证生成的文档确实包含了预期的权限信息
总结
通过在springdoc-openapi中自定义操作描述,我们能够将重要的权限信息自动集成到API文档中。这种方法不仅提高了文档的实用性,还确保了权限信息的准确性和一致性,减少了手动维护文档的工作量。这种技术可以广泛应用于各种需要向API消费者传达额外元数据的场景,是构建高质量API文档的有力工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00