Google Cloud Go AI Platform 1.85.0版本发布:新增思考配置与模型检查点API
Google Cloud Go AI Platform是Google Cloud提供的机器学习平台服务,它允许开发者在云端构建、训练和部署机器学习模型。最新发布的1.85.0版本带来了一系列重要更新,特别是在模型推理配置和模型管理方面有了显著增强。
核心功能更新
思考配置(ThinkingConfig)支持
新版本在v1和v1beta1客户端库中都新增了ThinkingConfig功能。这是一个重要的推理配置选项,允许开发者更精细地控制模型在生成响应时的"思考"过程。这种配置特别适用于需要模型进行多步推理或复杂决策的场景,比如需要模型展示其推理链路的应用。
模型检查点(Model Checkpoint)API
新引入的Model Registry Model Checkpoint API为模型管理提供了更强大的功能。检查点是模型训练过程中的重要快照,这个API允许开发者:
- 保存训练过程中的关键模型状态
- 比较不同检查点之间的性能差异
- 从特定检查点恢复训练
- 管理模型的不同版本
上下文缓存加密支持
现在客户可以为上下文缓存设置encryption_spec,这增强了数据安全性,特别是在处理敏感信息时。上下文缓存是提高模型推理效率的重要机制,而加密支持则确保了缓存数据的安全性。
数据结构增强
Schema结构扩展
在v1和v1beta1版本的Schema消息中新增了两个字段:
ref:用于引用其他Schemadefs:用于定义Schema
这些扩展使得Schema定义更加灵活,能够支持更复杂的数据结构描述需求,特别是在处理嵌套或递归数据结构时特别有用。
弃用通知
新版本中弃用了HARM_CATEGORY_CIVIC_INTEGRITY这一选举类别。这是Google在持续评估和调整其内容安全分类体系的一部分。开发者需要注意这一变更,并在应用中相应调整相关内容安全策略。
技术影响与最佳实践
对于正在使用AI Platform的开发者,建议:
-
思考配置的应用:对于需要模型展示推理过程或进行复杂决策的应用,应该评估采用ThinkingConfig是否能提升用户体验。
-
模型检查点管理:利用新的检查点API可以更有效地管理模型训练过程,特别是在长时间训练或需要比较不同训练阶段性能的场景下。
-
安全增强:对于处理敏感数据的应用,应该考虑启用上下文缓存的加密功能,以满足合规性要求。
-
Schema设计:新的Schema字段提供了更灵活的数据结构定义能力,在设计和实现复杂数据模型时可以充分利用这些新特性。
这个版本的更新主要集中在提升模型推理的灵活性、训练过程的管理能力以及数据安全性方面,体现了Google Cloud AI Platform在满足企业级MLOps需求方面的持续进步。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00