OrbStack中解决Ingress-NGINX控制器与本地负载均衡冲突问题
在Kubernetes集群中部署Ingress控制器是管理外部访问集群服务的常见方式。本文将详细介绍在OrbStack环境中部署Ingress-NGINX控制器时遇到的svclb-ingress-nginx-controller Pod无法正常运行的问题及其解决方案。
问题现象
当用户尝试在OrbStack的Kubernetes环境中部署Ingress-NGINX控制器时,发现svclb-ingress-nginx-controller Pod处于Pending状态。通过describe命令查看Pod详情,可以看到调度失败的原因是节点没有可用的端口资源。
具体表现为:
- svclb-ingress-nginx-controller Pod无法启动
- HTTP服务访问正常,但HTTPS服务无法访问
- 错误信息显示"0/1 nodes are available: 1 node(s) didn't have free ports for the requested pod ports"
问题根源分析
这个问题源于OrbStack环境的两个特性:
-
单节点限制:OrbStack默认使用单节点Kubernetes集群,而用户尝试创建了多个LoadBalancer类型的服务,这些服务都要求使用相同的端口(80和443)。
-
内置负载均衡:OrbStack已经内置了一个透明的负载均衡器,它会自动为容器提供HTTPS支持,允许用户通过
https://{container-name}.orb.local格式访问服务。这个内置负载均衡器已经占用了80和443端口。
解决方案
方案一:修改服务类型
最简单的解决方案是将Ingress-NGINX控制器的服务类型从LoadBalancer改为ClusterIP:
kubectl patch svc ingress-nginx-controller -n ingress-nginx -p '{"spec":{"type":"ClusterIP"}}'
这种方案适用于只需要通过Ingress规则访问服务,而不需要直接通过LoadBalancer IP访问的场景。
方案二:使用Helm安装Ingress-NGINX
更推荐的方案是使用Helm来安装Ingress-NGINX控制器,这样可以更灵活地配置各种参数:
helm upgrade --install ingress-nginx ingress-nginx \
--repo https://kubernetes.github.io/ingress-nginx \
--namespace ingress-nginx --create-namespace
然后创建示例应用和Service:
kubectl create namespace sample
kubectl create deployment nginx --image nginx -n sample
kubectl expose deploy/nginx --port=80 -n sample
配置Ingress规则
创建Ingress资源定义文件sample-nginx-ingress.yaml:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: sample-nginx-by-ingress-nginx
spec:
ingressClassName: nginx
rules:
- host: sample-nginx.k8s.orb.local
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: nginx
port:
number: 80
应用Ingress配置:
kubectl apply -f sample-nginx-ingress.yaml -n sample
注意事项
-
当通过HTTPS访问服务时,可能会遇到证书错误(NET::ERR_CERT_AUTHORITY_INVALID),这是因为使用了自签名证书,在测试环境中可以安全地忽略此警告。
-
在OrbStack环境中,建议优先使用内置的负载均衡功能,除非有特殊需求才额外部署Ingress控制器。
-
如果确实需要同时使用多个LoadBalancer服务,可以考虑使用不同的端口,或者部署多节点的Kubernetes集群。
通过以上解决方案,用户可以在OrbStack环境中顺利部署和使用Ingress-NGINX控制器,同时避免与内置负载均衡器的端口冲突问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0134
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00