OrbStack中解决Ingress-NGINX控制器与本地负载均衡冲突问题
在Kubernetes集群中部署Ingress控制器是管理外部访问集群服务的常见方式。本文将详细介绍在OrbStack环境中部署Ingress-NGINX控制器时遇到的svclb-ingress-nginx-controller Pod无法正常运行的问题及其解决方案。
问题现象
当用户尝试在OrbStack的Kubernetes环境中部署Ingress-NGINX控制器时,发现svclb-ingress-nginx-controller Pod处于Pending状态。通过describe命令查看Pod详情,可以看到调度失败的原因是节点没有可用的端口资源。
具体表现为:
- svclb-ingress-nginx-controller Pod无法启动
- HTTP服务访问正常,但HTTPS服务无法访问
- 错误信息显示"0/1 nodes are available: 1 node(s) didn't have free ports for the requested pod ports"
问题根源分析
这个问题源于OrbStack环境的两个特性:
-
单节点限制:OrbStack默认使用单节点Kubernetes集群,而用户尝试创建了多个LoadBalancer类型的服务,这些服务都要求使用相同的端口(80和443)。
-
内置负载均衡:OrbStack已经内置了一个透明的负载均衡器,它会自动为容器提供HTTPS支持,允许用户通过
https://{container-name}.orb.local格式访问服务。这个内置负载均衡器已经占用了80和443端口。
解决方案
方案一:修改服务类型
最简单的解决方案是将Ingress-NGINX控制器的服务类型从LoadBalancer改为ClusterIP:
kubectl patch svc ingress-nginx-controller -n ingress-nginx -p '{"spec":{"type":"ClusterIP"}}'
这种方案适用于只需要通过Ingress规则访问服务,而不需要直接通过LoadBalancer IP访问的场景。
方案二:使用Helm安装Ingress-NGINX
更推荐的方案是使用Helm来安装Ingress-NGINX控制器,这样可以更灵活地配置各种参数:
helm upgrade --install ingress-nginx ingress-nginx \
--repo https://kubernetes.github.io/ingress-nginx \
--namespace ingress-nginx --create-namespace
然后创建示例应用和Service:
kubectl create namespace sample
kubectl create deployment nginx --image nginx -n sample
kubectl expose deploy/nginx --port=80 -n sample
配置Ingress规则
创建Ingress资源定义文件sample-nginx-ingress.yaml:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: sample-nginx-by-ingress-nginx
spec:
ingressClassName: nginx
rules:
- host: sample-nginx.k8s.orb.local
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: nginx
port:
number: 80
应用Ingress配置:
kubectl apply -f sample-nginx-ingress.yaml -n sample
注意事项
-
当通过HTTPS访问服务时,可能会遇到证书错误(NET::ERR_CERT_AUTHORITY_INVALID),这是因为使用了自签名证书,在测试环境中可以安全地忽略此警告。
-
在OrbStack环境中,建议优先使用内置的负载均衡功能,除非有特殊需求才额外部署Ingress控制器。
-
如果确实需要同时使用多个LoadBalancer服务,可以考虑使用不同的端口,或者部署多节点的Kubernetes集群。
通过以上解决方案,用户可以在OrbStack环境中顺利部署和使用Ingress-NGINX控制器,同时避免与内置负载均衡器的端口冲突问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00