3DSmoothNet 开源项目教程
1. 项目介绍
3DSmoothNet 是一个用于匹配 3D 点云的完整工作流程,采用了孪生深度学习架构和全卷积层。该项目的主要目标是提供一种高效且准确的 3D 点云匹配方法,通过使用体素化的平滑密度值(SDV)表示,计算每个兴趣点的 SDV 并将其对齐到局部参考框架(LRF),以实现旋转不变性。3DSmoothNet 在 3DMatch 基准数据集上实现了 94.9% 的平均召回率,超越了现有技术水平 20 个百分点,且仅使用 32 个输出维度。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.5
- TensorFlow
- Point Cloud Library (PCL)
- OpenMP
你可以通过以下命令安装 PCL:
./install_pcl.sh
2.2 克隆项目
克隆 3DSmoothNet 项目到本地:
git clone https://github.com/zgojcic/3DSmoothNet.git
cd 3DSmoothNet
2.3 编译项目
使用 CMake 编译项目:
cmake -DCMAKE_BUILD_TYPE=Release
make
2.4 运行示例
运行示例代码以计算 SDV 体素网格并推断 3DSmoothNet 描述符:
python main_cnn.py --run_mode=test
3. 应用案例和最佳实践
3.1 室内场景匹配
3DSmoothNet 在室内场景的 RGB-D 数据上表现出色,可以用于建筑物内部的点云匹配,例如房间布局的自动生成和室内导航。
3.2 户外场景匹配
尽管主要在室内场景上训练,3DSmoothNet 在户外激光扫描数据上也表现优异,特别是在植被覆盖的区域,其平均召回率达到 79.0%。
3.3 实时应用
由于其低输出维度(32 维),3DSmoothNet 可以在标准 PC 上以接近实时的速度(每特征点 0.1 毫秒)进行对应搜索,适用于需要快速响应的应用场景。
4. 典型生态项目
4.1 3DMatch
3DMatch 是一个用于 3D 点云匹配的基准数据集,3DSmoothNet 在该数据集上进行了训练和测试,提供了高质量的点云匹配结果。
4.2 Point Cloud Library (PCL)
PCL 是一个开源的点云处理库,3DSmoothNet 使用了 PCL 来处理和分析点云数据,提供了强大的点云处理能力。
4.3 TensorFlow
TensorFlow 是一个开源的机器学习框架,3DSmoothNet 使用了 TensorFlow 来构建和训练深度学习模型,提供了高效的模型训练和推断能力。
通过以上步骤,你可以快速上手并使用 3DSmoothNet 进行 3D 点云匹配任务。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









