3DSmoothNet 开源项目教程
1. 项目介绍
3DSmoothNet 是一个用于匹配 3D 点云的完整工作流程,采用了孪生深度学习架构和全卷积层。该项目的主要目标是提供一种高效且准确的 3D 点云匹配方法,通过使用体素化的平滑密度值(SDV)表示,计算每个兴趣点的 SDV 并将其对齐到局部参考框架(LRF),以实现旋转不变性。3DSmoothNet 在 3DMatch 基准数据集上实现了 94.9% 的平均召回率,超越了现有技术水平 20 个百分点,且仅使用 32 个输出维度。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.5
- TensorFlow
- Point Cloud Library (PCL)
- OpenMP
你可以通过以下命令安装 PCL:
./install_pcl.sh
2.2 克隆项目
克隆 3DSmoothNet 项目到本地:
git clone https://github.com/zgojcic/3DSmoothNet.git
cd 3DSmoothNet
2.3 编译项目
使用 CMake 编译项目:
cmake -DCMAKE_BUILD_TYPE=Release
make
2.4 运行示例
运行示例代码以计算 SDV 体素网格并推断 3DSmoothNet 描述符:
python main_cnn.py --run_mode=test
3. 应用案例和最佳实践
3.1 室内场景匹配
3DSmoothNet 在室内场景的 RGB-D 数据上表现出色,可以用于建筑物内部的点云匹配,例如房间布局的自动生成和室内导航。
3.2 户外场景匹配
尽管主要在室内场景上训练,3DSmoothNet 在户外激光扫描数据上也表现优异,特别是在植被覆盖的区域,其平均召回率达到 79.0%。
3.3 实时应用
由于其低输出维度(32 维),3DSmoothNet 可以在标准 PC 上以接近实时的速度(每特征点 0.1 毫秒)进行对应搜索,适用于需要快速响应的应用场景。
4. 典型生态项目
4.1 3DMatch
3DMatch 是一个用于 3D 点云匹配的基准数据集,3DSmoothNet 在该数据集上进行了训练和测试,提供了高质量的点云匹配结果。
4.2 Point Cloud Library (PCL)
PCL 是一个开源的点云处理库,3DSmoothNet 使用了 PCL 来处理和分析点云数据,提供了强大的点云处理能力。
4.3 TensorFlow
TensorFlow 是一个开源的机器学习框架,3DSmoothNet 使用了 TensorFlow 来构建和训练深度学习模型,提供了高效的模型训练和推断能力。
通过以上步骤,你可以快速上手并使用 3DSmoothNet 进行 3D 点云匹配任务。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04