3DSmoothNet 开源项目教程
1. 项目介绍
3DSmoothNet 是一个用于匹配 3D 点云的完整工作流程,采用了孪生深度学习架构和全卷积层。该项目的主要目标是提供一种高效且准确的 3D 点云匹配方法,通过使用体素化的平滑密度值(SDV)表示,计算每个兴趣点的 SDV 并将其对齐到局部参考框架(LRF),以实现旋转不变性。3DSmoothNet 在 3DMatch 基准数据集上实现了 94.9% 的平均召回率,超越了现有技术水平 20 个百分点,且仅使用 32 个输出维度。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.5
- TensorFlow
- Point Cloud Library (PCL)
- OpenMP
你可以通过以下命令安装 PCL:
./install_pcl.sh
2.2 克隆项目
克隆 3DSmoothNet 项目到本地:
git clone https://github.com/zgojcic/3DSmoothNet.git
cd 3DSmoothNet
2.3 编译项目
使用 CMake 编译项目:
cmake -DCMAKE_BUILD_TYPE=Release
make
2.4 运行示例
运行示例代码以计算 SDV 体素网格并推断 3DSmoothNet 描述符:
python main_cnn.py --run_mode=test
3. 应用案例和最佳实践
3.1 室内场景匹配
3DSmoothNet 在室内场景的 RGB-D 数据上表现出色,可以用于建筑物内部的点云匹配,例如房间布局的自动生成和室内导航。
3.2 户外场景匹配
尽管主要在室内场景上训练,3DSmoothNet 在户外激光扫描数据上也表现优异,特别是在植被覆盖的区域,其平均召回率达到 79.0%。
3.3 实时应用
由于其低输出维度(32 维),3DSmoothNet 可以在标准 PC 上以接近实时的速度(每特征点 0.1 毫秒)进行对应搜索,适用于需要快速响应的应用场景。
4. 典型生态项目
4.1 3DMatch
3DMatch 是一个用于 3D 点云匹配的基准数据集,3DSmoothNet 在该数据集上进行了训练和测试,提供了高质量的点云匹配结果。
4.2 Point Cloud Library (PCL)
PCL 是一个开源的点云处理库,3DSmoothNet 使用了 PCL 来处理和分析点云数据,提供了强大的点云处理能力。
4.3 TensorFlow
TensorFlow 是一个开源的机器学习框架,3DSmoothNet 使用了 TensorFlow 来构建和训练深度学习模型,提供了高效的模型训练和推断能力。
通过以上步骤,你可以快速上手并使用 3DSmoothNet 进行 3D 点云匹配任务。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00