Geemap项目中extract_values_to_points函数的使用问题解析
2025-06-19 06:54:20作者:房伟宁
问题背景
在使用Geemap项目中的extract_values_to_points函数时,用户遇到了两个主要问题:一是提取后的像素值完全相同,不符合预期;二是系统索引值出现异常(如0000000000000000000a等16进制格式)。这些问题影响了用户从多波段影像中提取像素值的准确性。
问题分析
像素值完全相同问题
当用户使用extract_values_to_points函数从Sentinel-2影像中提取NDVI值时,发现所有样本点的提取结果完全一致。这种情况通常表明:
- 函数可能使用了不恰当的空间分辨率进行计算
- 数据重采样过程中可能存在问题
- 函数内部处理机制可能对多波段影像支持不够完善
系统索引异常问题
用户注意到提取结果中的系统索引(system:index)出现了16进制格式的异常值(如0000000000000000000a等),而预期应该是连续的十进制数值。这表明:
- 函数在处理特征集合时可能没有正确保留原始索引
- 特征集合在转换过程中可能发生了格式变化
解决方案
经过深入分析,发现以下解决方案可以有效解决上述问题:
1. 显式指定scale参数
在使用extract_values_to_points函数时,明确指定scale参数为10米分辨率:
geemap.extract_values_to_points(hhmc, ndvi_multi_band_image, 'output.csv', scale=10)
这样可以确保提取操作使用正确的空间分辨率,避免因默认分辨率不合适导致的像素值相同问题。
2. 使用替代方法提取像素值
如果仍然遇到问题,可以采用更基础的Earth Engine API方法进行像素值提取:
def add_index(fc):
indices = ee.List.sequence(0, fc.size().subtract(1))
indexed_fc = fc.toList(fc.size()).zip(indices).map(lambda el:
ee.Feature(ee.List(el).get(0)).set('custom_index', ee.List(el).get(1)))
return ee.FeatureCollection(indexed_fc)
hhmc = add_index(hhmc)
def extract_and_export_samples(indexed_collection, image, description):
extracted = image.reduceRegions(
collection=indexed_collection,
reducer=ee.Reducer.first(),
scale=10
)
task = ee.batch.Export.table.toDrive(
collection=extracted,
description=description,
selectors=['custom_index', 'class', 'label', 'NDVI_1', 'NDVI_2', ...],
fileFormat='CSV'
)
task.start()
extract_and_export_samples(hhmc, ndvi_multi_band_image, 'Sample_Values')
这种方法虽然代码量稍多,但可以更精确地控制提取过程,确保结果准确性。
最佳实践建议
- 始终明确指定scale参数:特别是在处理高分辨率影像时,避免依赖默认值
- 验证输入数据:在提取前检查影像和样本点的空间分布和值范围
- 分批处理大数据集:对于大型特征集合,考虑分批处理以避免计算超时
- 添加自定义索引:为特征集合添加明确的索引字段,便于后续分析和验证
- 结果验证:提取后抽样检查结果,确保值分布合理
总结
Geemap的extract_values_to_points函数虽然提供了便捷的像素值提取功能,但在处理特定场景时可能需要额外配置或替代方案。理解函数背后的工作原理和Earth Engine的处理机制,有助于开发者更灵活地解决实际问题。对于关键分析任务,建议同时尝试多种方法并比较结果,以确保数据准确性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
307
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
259
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
878
仓颉编译器源码及 cjdb 调试工具。
C++
134
867