Mongoose TLS 数据接收问题分析与解决方案
2025-05-20 10:11:24作者:廉皓灿Ida
问题背景
在使用 Mongoose 网络库的 Mbed TLS 实现时,开发者遇到了一个 TLS 数据接收问题:当服务器快速连续发送多条消息时,只有第一条消息能够被及时处理,后续消息会出现显著延迟。这一问题在使用 Mongoose 内置 TCP 栈和 Mbed TLS 2.28.1 版本的 Raspberry Pi Pico SDK 环境中尤为明显。
问题现象
具体表现为:
- 当 MQTT 客户端订阅多个主题时
- 服务器快速连续发布多条消息(如客户端连接数更新和测试消息)
- 客户端只能及时处理第一条消息
- 后续消息需要等待较长时间才能被处理
通过 Wireshark 抓包分析,发现多个 TLS 记录被封装在同一个 TCP 数据包中,但 Mongoose 只处理了第一个记录。
技术分析
根本原因
Mongoose 的 TLS 数据处理机制存在以下问题:
- 单次读取限制:当前实现只对每个 TCP 数据包调用一次
mbedtls_ssl_read,即使缓冲区中仍有未处理的 TLS 记录 - 轮询机制不足:内置 TCP 栈的轮询机制没有充分考虑 TLS 层可能存在的未处理数据
- 缓冲区管理:TLS 解密后的数据直接放入接收缓冲区,但没有充分处理多记录情况
影响范围
该问题主要影响:
- 使用 Mongoose 内置 TCP 栈的场景
- 高延迟网络环境(更容易出现多记录打包)
- 需要快速连续处理多条消息的应用(如 MQTT)
解决方案探索
开发者提出了几种解决方案:
方案一:接收循环
在 read_conn 函数中添加循环,持续调用 mg_tls_recv 直到返回 MBEDTLS_ERR_SSL_WANT_READ 或其他错误:
while(true) {
long n = mg_tls_recv(c, &io->buf[io->len], io->size - io->len);
if (n == MG_IO_ERR) {
mg_error(c, "TLS recv error");
break;
} else if (n > 0) {
io->len += (size_t) n;
mg_call(c, MG_EV_READ, &n);
} else {
break;
}
}
方案二:轮询机制增强
修改 mg_mgr_poll 函数,增加对未处理 TLS 数据的检查:
if (c->is_tls && mg_tls_pending(c) > 0)
handle_tls_recv((struct mg_iobuf *) &c->rtls);
方案三:TLS 接收函数改进
修改 mg_tls_recv 实现,使其能够处理多个 TLS 记录:
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
struct mg_tls *tls = (struct mg_tls *) c->tls;
size_t total_read = 0;
while (total_read < len) {
long n = mbedtls_ssl_read(&tls->ssl, buf + total_read, len - total_read);
if(n > 0) {
total_read += (size_t) n;
} else if (n == MBEDTLS_ERR_SSL_WANT_READ || n == MBEDTLS_ERR_SSL_WANT_WRITE) {
return total_read ? (long)total_read : MG_IO_WAIT;
} else {
return total_read ? (long)total_read : MG_IO_ERR;
}
}
return (long) total_read;
}
最佳实践建议
- 网络环境考虑:在高延迟网络环境中应特别注意此问题
- 缓冲区管理:合理设置接收缓冲区大小以容纳可能的多个 TLS 记录
- 错误处理:完善错误处理逻辑,特别是部分读取情况的处理
- 测试验证:在模拟高延迟环境下进行充分测试
结论
Mongoose 在处理多个 TLS 记录时存在数据接收不完全的问题,特别是在使用内置 TCP 栈和高延迟网络环境下。通过改进接收循环、增强轮询机制或修改 TLS 接收函数实现,可以有效解决这一问题。开发者应根据具体应用场景选择最适合的解决方案,并在实际部署前进行充分测试验证。
对于关键业务系统,建议考虑使用经过充分验证的 TLS 实现,并关注 Mongoose 官方后续的修复和更新。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248