Mongoose TLS 数据接收问题分析与解决方案
2025-05-20 10:11:24作者:廉皓灿Ida
问题背景
在使用 Mongoose 网络库的 Mbed TLS 实现时,开发者遇到了一个 TLS 数据接收问题:当服务器快速连续发送多条消息时,只有第一条消息能够被及时处理,后续消息会出现显著延迟。这一问题在使用 Mongoose 内置 TCP 栈和 Mbed TLS 2.28.1 版本的 Raspberry Pi Pico SDK 环境中尤为明显。
问题现象
具体表现为:
- 当 MQTT 客户端订阅多个主题时
- 服务器快速连续发布多条消息(如客户端连接数更新和测试消息)
- 客户端只能及时处理第一条消息
- 后续消息需要等待较长时间才能被处理
通过 Wireshark 抓包分析,发现多个 TLS 记录被封装在同一个 TCP 数据包中,但 Mongoose 只处理了第一个记录。
技术分析
根本原因
Mongoose 的 TLS 数据处理机制存在以下问题:
- 单次读取限制:当前实现只对每个 TCP 数据包调用一次
mbedtls_ssl_read,即使缓冲区中仍有未处理的 TLS 记录 - 轮询机制不足:内置 TCP 栈的轮询机制没有充分考虑 TLS 层可能存在的未处理数据
- 缓冲区管理:TLS 解密后的数据直接放入接收缓冲区,但没有充分处理多记录情况
影响范围
该问题主要影响:
- 使用 Mongoose 内置 TCP 栈的场景
- 高延迟网络环境(更容易出现多记录打包)
- 需要快速连续处理多条消息的应用(如 MQTT)
解决方案探索
开发者提出了几种解决方案:
方案一:接收循环
在 read_conn 函数中添加循环,持续调用 mg_tls_recv 直到返回 MBEDTLS_ERR_SSL_WANT_READ 或其他错误:
while(true) {
long n = mg_tls_recv(c, &io->buf[io->len], io->size - io->len);
if (n == MG_IO_ERR) {
mg_error(c, "TLS recv error");
break;
} else if (n > 0) {
io->len += (size_t) n;
mg_call(c, MG_EV_READ, &n);
} else {
break;
}
}
方案二:轮询机制增强
修改 mg_mgr_poll 函数,增加对未处理 TLS 数据的检查:
if (c->is_tls && mg_tls_pending(c) > 0)
handle_tls_recv((struct mg_iobuf *) &c->rtls);
方案三:TLS 接收函数改进
修改 mg_tls_recv 实现,使其能够处理多个 TLS 记录:
long mg_tls_recv(struct mg_connection *c, void *buf, size_t len) {
struct mg_tls *tls = (struct mg_tls *) c->tls;
size_t total_read = 0;
while (total_read < len) {
long n = mbedtls_ssl_read(&tls->ssl, buf + total_read, len - total_read);
if(n > 0) {
total_read += (size_t) n;
} else if (n == MBEDTLS_ERR_SSL_WANT_READ || n == MBEDTLS_ERR_SSL_WANT_WRITE) {
return total_read ? (long)total_read : MG_IO_WAIT;
} else {
return total_read ? (long)total_read : MG_IO_ERR;
}
}
return (long) total_read;
}
最佳实践建议
- 网络环境考虑:在高延迟网络环境中应特别注意此问题
- 缓冲区管理:合理设置接收缓冲区大小以容纳可能的多个 TLS 记录
- 错误处理:完善错误处理逻辑,特别是部分读取情况的处理
- 测试验证:在模拟高延迟环境下进行充分测试
结论
Mongoose 在处理多个 TLS 记录时存在数据接收不完全的问题,特别是在使用内置 TCP 栈和高延迟网络环境下。通过改进接收循环、增强轮询机制或修改 TLS 接收函数实现,可以有效解决这一问题。开发者应根据具体应用场景选择最适合的解决方案,并在实际部署前进行充分测试验证。
对于关键业务系统,建议考虑使用经过充分验证的 TLS 实现,并关注 Mongoose 官方后续的修复和更新。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882