StatsForecast项目中MSTL分解图的可视化实现
2025-06-14 12:43:32作者:彭桢灵Jeremy
在时间序列分析领域,分解是一种重要的技术手段,它能够帮助分析师理解数据中的趋势、季节性和残差成分。StatsForecast作为一个功能强大的时间序列预测库,其MSTL(Multiple Seasonal-Trend decomposition using Loess)模型提供了多季节性分解的能力。
MSTL分解原理
MSTL模型是传统STL(Seasonal-Trend decomposition using Loess)的扩展版本,专门针对具有多个季节性周期的时间序列数据。它通过局部加权回归(Loess)方法,将时间序列分解为三个主要部分:
- 趋势成分(Trend):反映数据的长期变化方向
- 季节性成分(Seasonal):包含一个或多个周期性模式
- 残差成分(Residual):去除趋势和季节性后的剩余部分
实现MSTL分解可视化
在StatsForecast中,虽然官方没有直接提供分解图的绘制函数,但通过简单的代码即可实现专业级的可视化效果。以下是完整的实现示例:
import numpy as np
from statsforecast.models import MSTL
# 生成具有多重季节性的模拟数据
amplitudes = [3, 5] # 两个季节性成分的振幅
seasonal_periods = [5, 24] # 两个不同的季节周期
t = 1 + np.arange(500) # 时间索引
# 构建基础序列(包含噪声)
x = np.random.normal(scale=0.1, size=t.size)
# 添加两个季节性成分
for amplitude, period in zip(amplitudes, seasonal_periods):
x += amplitude * np.cos(2 * np.pi * t / period)
# 创建并拟合MSTL模型
model = MSTL(season_length=seasonal_periods).fit(x)
# 绘制分解图
model.model_.plot(subplots=True)
可视化结果解读
执行上述代码将生成一个包含四个子图的分解可视化结果:
- 原始序列:展示输入的时间序列数据
- 趋势成分:显示数据中的长期变化趋势
- 季节性成分:包含所有季节性模式的叠加效果
- 残差成分:去除趋势和季节性后的剩余部分
这种可视化方式特别适合分析具有复杂季节性模式的数据,如:
- 日周期和小时周期同时存在的电力负荷数据
- 周周期和月周期并存的销售数据
- 多种生物节律叠加的医疗监测数据
实际应用建议
对于使用StatsForecast进行预测分析的用户,可以通过sf.fitted_[0, 0].model_访问已拟合模型的分解结果。这种方法不仅适用于MSTL模型,也适用于库中其他支持分解的模型。
通过这种分解可视化,分析师可以:
- 直观验证季节性假设是否合理
- 识别异常残差模式
- 评估不同成分的相对强度
- 为后续模型选择和参数调优提供依据
这种可视化技术已成为时间序列分析中不可或缺的诊断工具,特别适合处理现代商业和工业环境中常见的复杂季节性数据。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
146
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19