Wandb项目v0.19.2版本发布:增强JWT认证与多进程稳定性优化
Wandb是一个流行的机器学习实验跟踪工具,它能够帮助研究人员和工程师记录、可视化和比较机器学习实验的结果。该项目提供了丰富的功能,包括实验管理、超参数调优、模型版本控制等,是机器学习工作流中不可或缺的工具。
JWT认证支持
本次v0.19.2版本新增了对JWT(JSON Web Token)认证的支持。JWT是一种开放标准(RFC 7519),用于在各方之间安全地传输信息作为JSON对象。在wandb-core中集成JWT认证后,用户可以使用更安全、更灵活的身份验证方式来访问wandb服务。
这一改进特别适合企业级应用场景,开发者现在可以:
- 实现基于令牌的无状态认证机制
- 设置自定义的令牌过期时间
- 在分布式系统中更安全地传递认证信息
嵌套自定义图表支持
新版本扩展了可视化功能,增加了对嵌套自定义图表的支持。这意味着用户现在可以创建更复杂、更结构化的可视化展示,将相关图表组织在一起形成层次结构。
例如,在模型评估过程中,开发者可以:
- 将不同指标的分类图表嵌套在一个主图表下
- 创建多层次的比较视图,直观展示模型在不同数据集上的表现
- 构建更专业的分析仪表板,提高结果解读效率
运行模式行为变更
v0.19.2版本调整了"disabled"模式的行为逻辑。现在,调用wandb.init(mode="disabled")
只会禁用当前运行,而不会影响后续运行。如果需要全局禁用所有运行,开发者应该使用wandb.setup(settings=wandb.Settings(mode="disabled"))
。
这一变更带来了更精细的控制粒度,使得:
- 测试代码时可以更灵活地控制wandb行为
- 在大型项目中能够更精确地管理实验跟踪
- 减少了意外禁用所有运行的风险
多进程稳定性增强
本次更新解决了多个与多进程相关的稳定性问题:
- 修复了使用
multiprocessing
从多个进程更新单个运行时的偶发死锁问题 - 改进了停止按钮的行为,现在能够正确中断运行Python主线程中的C代码或睡眠状态
- 优化了Azure Blob Storage大文件上传的可靠性
这些改进使得wandb在分布式训练场景下表现更加稳定,特别是在使用多进程进行模型训练或超参数搜索时。
其他重要修复
- 移除了
wandb.Api().runs()
检查时的意外打印输出 - 修复了
wandb offline
命令导致的设置验证错误 - 解决了重新初始化运行时的属性访问错误
- 提升了与旧版本botocore的兼容性
- 完善了对无效anonymous设置值的检查
向后兼容性说明
本次更新移除了一些内部API:
wandb.wandb_sdk.wandb_setup._setup()
函数的reset
参数已被移除- 移除了
wandb.wandb_sdk.wandb_setup
模块中的logger
和_set_logger
符号
开发者应该使用wandb.teardown()
替代_setup(reset=True)
的功能。这些变更主要影响内部实现,大多数用户不会受到影响。
总结
Wandb v0.19.2版本带来了多项实用改进,特别是在安全认证、可视化功能和系统稳定性方面。这些增强使得wandb在复杂机器学习工作流中的表现更加可靠和灵活。对于使用多进程训练或需要高级认证机制的用户,升级到这个版本将获得显著的体验提升。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









