Wandb项目v0.19.2版本发布:增强JWT认证与多进程稳定性优化
Wandb是一个流行的机器学习实验跟踪工具,它能够帮助研究人员和工程师记录、可视化和比较机器学习实验的结果。该项目提供了丰富的功能,包括实验管理、超参数调优、模型版本控制等,是机器学习工作流中不可或缺的工具。
JWT认证支持
本次v0.19.2版本新增了对JWT(JSON Web Token)认证的支持。JWT是一种开放标准(RFC 7519),用于在各方之间安全地传输信息作为JSON对象。在wandb-core中集成JWT认证后,用户可以使用更安全、更灵活的身份验证方式来访问wandb服务。
这一改进特别适合企业级应用场景,开发者现在可以:
- 实现基于令牌的无状态认证机制
- 设置自定义的令牌过期时间
- 在分布式系统中更安全地传递认证信息
嵌套自定义图表支持
新版本扩展了可视化功能,增加了对嵌套自定义图表的支持。这意味着用户现在可以创建更复杂、更结构化的可视化展示,将相关图表组织在一起形成层次结构。
例如,在模型评估过程中,开发者可以:
- 将不同指标的分类图表嵌套在一个主图表下
- 创建多层次的比较视图,直观展示模型在不同数据集上的表现
- 构建更专业的分析仪表板,提高结果解读效率
运行模式行为变更
v0.19.2版本调整了"disabled"模式的行为逻辑。现在,调用wandb.init(mode="disabled")只会禁用当前运行,而不会影响后续运行。如果需要全局禁用所有运行,开发者应该使用wandb.setup(settings=wandb.Settings(mode="disabled"))。
这一变更带来了更精细的控制粒度,使得:
- 测试代码时可以更灵活地控制wandb行为
- 在大型项目中能够更精确地管理实验跟踪
- 减少了意外禁用所有运行的风险
多进程稳定性增强
本次更新解决了多个与多进程相关的稳定性问题:
- 修复了使用
multiprocessing从多个进程更新单个运行时的偶发死锁问题 - 改进了停止按钮的行为,现在能够正确中断运行Python主线程中的C代码或睡眠状态
- 优化了Azure Blob Storage大文件上传的可靠性
这些改进使得wandb在分布式训练场景下表现更加稳定,特别是在使用多进程进行模型训练或超参数搜索时。
其他重要修复
- 移除了
wandb.Api().runs()检查时的意外打印输出 - 修复了
wandb offline命令导致的设置验证错误 - 解决了重新初始化运行时的属性访问错误
- 提升了与旧版本botocore的兼容性
- 完善了对无效anonymous设置值的检查
向后兼容性说明
本次更新移除了一些内部API:
wandb.wandb_sdk.wandb_setup._setup()函数的reset参数已被移除- 移除了
wandb.wandb_sdk.wandb_setup模块中的logger和_set_logger符号
开发者应该使用wandb.teardown()替代_setup(reset=True)的功能。这些变更主要影响内部实现,大多数用户不会受到影响。
总结
Wandb v0.19.2版本带来了多项实用改进,特别是在安全认证、可视化功能和系统稳定性方面。这些增强使得wandb在复杂机器学习工作流中的表现更加可靠和灵活。对于使用多进程训练或需要高级认证机制的用户,升级到这个版本将获得显著的体验提升。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00