Moire-Pattern-Detection 的安装和配置教程
2025-05-23 12:00:57作者:殷蕙予
1. 项目基础介绍和主要编程语言
Moire-Pattern-Detection 是一个用于检测摩尔纹(Moire Pattern)的开源项目。摩尔纹是在图像处理中由于图像采样和重建过程中的不匹配所产生的一种干扰图案。该项目通过使用小波分解和卷积神经网络(CNN)来检测图像中的摩尔纹。主要编程语言是 Python。
2. 项目使用的关键技术和框架
- 小波分解(Wavelet Decomposition):将图像分解为不同的频率组件,以便更好地分析图像内容。
- 卷积神经网络(CNN):一种深度学习算法,用于训练模型识别和分类摩尔纹。
- TensorFlow:一个用于机器学习的开源框架,该项目使用其来构建和训练 CNN 模型。
- Keras:一个高级神经网络API,运行在TensorFlow之上,用于快速实验和构建神经网络模型。
- PyWavelets:一个用于小波变换的Python库。
3. 项目安装和配置的准备工作及详细步骤
准备工作
- 确保您的计算机上已安装 Python 3。
- 安装必要的依赖库。
安装步骤
-
克隆项目到本地计算机:
git clone https://github.com/AmadeusITGroup/Moire-Pattern-Detection.git cd Moire-Pattern-Detection
-
安装项目依赖:
pip install tensorflow pip install keras pip install Pillow pip install scikit-learn pip install scikit-image pip install PyWavelets
-
准备数据集:
将正样本(含有摩尔纹的图像)放入一个文件夹,负样本(不含摩尔纹的图像)放入另一个文件夹。确保所有图像的尺寸调整为宽度1000像素,高度750像素。
-
创建小波分解后的训练数据:
python createTrainingData.py positiveImages negativeImages train
其中
positiveImages
和negativeImages
是存放正负样本的文件夹路径,train
参数设置为0表示训练,设置为1表示测试。 -
训练 CNN 模型:
python train.py positiveImages negativeImages trainingDataPositive trainingDataNegative epochs
positiveImages
和negativeImages
是原始正负样本的文件夹路径,trainingDataPositive
和trainingDataNegative
是存放转换后的正负样本的文件夹路径,epochs
是训练的轮数。 -
测试 CNN 模型:
python test.py moirePattern3CNN_.h5 positiveImages negativeImages
moirePattern3CNN_.h5
是保存的CNN模型文件,positiveTestImages
和negativeTestImages
是测试的正负样本文件夹路径。
按照上述步骤操作,您可以成功安装和配置 Moire-Pattern-Detection 项目,并开始使用它来检测摩尔纹。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0116AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
220
2.24 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
581

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
565
89

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
37
0