YOLOv5模型训练中解决类别不平衡与尺度适应问题的实践指南
在基于YOLOv5进行目标检测模型训练时,经常会遇到两个关键挑战:类别不平衡问题和目标尺度适应问题。本文将深入分析这些问题产生的原因,并提供一系列经过验证的解决方案。
类别不平衡问题分析
当训练数据集中某些类别的样本数量远多于其他类别时,模型往往会偏向于预测数量占优的类别。例如在一个监控场景中,"人"类别的样本可能达到28万张,而"手提箱"只有6千张,其他新增类别约1万张左右。
这种极端不平衡会导致模型:
- 对少数类别的学习不充分
- 在推理时倾向于预测多数类别
- 新增类别的检测性能显著下降
类别不平衡解决方案
1. 损失函数优化
采用Focal Loss替代标准交叉熵损失,通过调整难易样本的权重,使模型更关注难以分类的样本。Focal Loss通过两个可调参数γ和α,分别控制难易样本的权重和类别权重。
2. 数据采样策略
实现加权随机采样器,确保每个训练批次中各类别的样本比例相对均衡。可以按类别频率的倒数作为采样权重,使少数类别有更高概率被选中。
3. 类别权重调整
在YOLOv5的训练配置中显式设置类别权重。对于样本量少的类别,可以适当提高其权重系数,平衡各类别对损失函数的贡献。
4. 渐进式训练策略
先在大规模数据集上预训练基础类别,然后在小规模数据集上微调新增类别。这种方法尤其适合当基础类别数据量极大时。
目标尺度适应问题
当训练数据中目标的尺度分布与实际应用场景不一致时,模型性能会显著下降。例如训练数据多为目标特写,而实际应用需要检测远距离小目标。
尺度适应解决方案
-
多尺度数据增强:在训练时随机调整输入图像尺寸,使模型接触不同尺度的目标。YOLOv5的multi-scale训练模式可自动实现这一点。
-
上下文丰富的训练数据:确保训练集包含目标在不同场景、不同距离下的图像,而不仅是特写镜头。
-
特征金字塔优化:调整模型中的FPN结构,增强对小目标的检测能力。可以尝试修改neck部分的特征融合方式。
-
针对性数据采集:根据实际应用场景的特点,专门采集包含远距离小目标的训练样本。
实践建议
- 监控每个类别的训练损失和验证指标,及时发现不平衡问题
- 使用更小的初始学习率进行微调,避免破坏已学到的特征
- 考虑使用更大的输入分辨率来提升小目标检测能力
- 对新增类别进行更激进的数据增强
- 在验证集上严格测试模型在不同尺度目标上的表现
通过系统性地应用这些方法,可以显著提升YOLOv5模型在类别不平衡和多尺度目标场景下的检测性能,使其更好地适应实际应用需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00