LLaMA-Factory训练过程中速度下降问题分析与解决方案
2025-05-02 12:05:33作者:姚月梅Lane
问题现象
在使用LLaMA-Factory进行模型微调时,部分用户报告了一个典型问题:训练初期速度正常(约2.5秒/迭代),但随着训练进行,速度会逐渐下降。相比之下,在Colab等云平台上运行时却能保持稳定的训练速度。
问题分析
经过技术分析,发现导致训练速度下降的主要原因是启用了include_num_input_tokens_seen参数。这个参数的设计初衷是记录训练过程中已处理的token数量,但在实际实现中可能会带来以下影响:
- 额外计算开销:需要持续跟踪和更新token计数
- 内存访问模式变化:可能导致缓存效率降低
- I/O操作增加:需要频繁写入统计信息
解决方案
针对这一问题,LLaMA-Factory项目维护者给出了明确的解决方案:
- 移除
include_num_input_tokens_seen参数:这是最简单直接的解决方法 - 使用默认配置:大多数情况下不需要特别记录token数量
- 监控系统资源:确保训练过程中没有其他资源瓶颈
技术建议
对于深度学习训练过程中的性能优化,建议考虑以下方面:
- 批处理大小:适当增加
per_device_train_batch_size可以提高GPU利用率 - 梯度累积:合理设置
gradient_accumulation_steps以平衡内存使用和训练效率 - 混合精度训练:启用
pure_bf16可以显著提升训练速度 - 数据预处理:使用
preprocessing_num_workers并行化数据加载
总结
在LLaMA-Factory项目中进行大规模语言模型微调时,保持训练速度稳定对于提高效率至关重要。通过合理配置训练参数,特别是避免使用非必要的统计功能,可以确保训练过程的高效稳定运行。对于大多数应用场景,移除include_num_input_tokens_seen参数即可解决训练速度逐渐下降的问题。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134