LLaMA-Factory训练过程中速度下降问题分析与解决方案
2025-05-02 08:32:06作者:姚月梅Lane
问题现象
在使用LLaMA-Factory进行模型微调时,部分用户报告了一个典型问题:训练初期速度正常(约2.5秒/迭代),但随着训练进行,速度会逐渐下降。相比之下,在Colab等云平台上运行时却能保持稳定的训练速度。
问题分析
经过技术分析,发现导致训练速度下降的主要原因是启用了include_num_input_tokens_seen参数。这个参数的设计初衷是记录训练过程中已处理的token数量,但在实际实现中可能会带来以下影响:
- 额外计算开销:需要持续跟踪和更新token计数
- 内存访问模式变化:可能导致缓存效率降低
- I/O操作增加:需要频繁写入统计信息
解决方案
针对这一问题,LLaMA-Factory项目维护者给出了明确的解决方案:
- 移除
include_num_input_tokens_seen参数:这是最简单直接的解决方法 - 使用默认配置:大多数情况下不需要特别记录token数量
- 监控系统资源:确保训练过程中没有其他资源瓶颈
技术建议
对于深度学习训练过程中的性能优化,建议考虑以下方面:
- 批处理大小:适当增加
per_device_train_batch_size可以提高GPU利用率 - 梯度累积:合理设置
gradient_accumulation_steps以平衡内存使用和训练效率 - 混合精度训练:启用
pure_bf16可以显著提升训练速度 - 数据预处理:使用
preprocessing_num_workers并行化数据加载
总结
在LLaMA-Factory项目中进行大规模语言模型微调时,保持训练速度稳定对于提高效率至关重要。通过合理配置训练参数,特别是避免使用非必要的统计功能,可以确保训练过程的高效稳定运行。对于大多数应用场景,移除include_num_input_tokens_seen参数即可解决训练速度逐渐下降的问题。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871