Otter项目中哈希表并发操作的安全性分析
在并发编程中,哈希表的实现一直是一个具有挑战性的问题。Otter项目作为一个高性能的并发缓存库,其内部哈希表实现采用了精细的并发控制机制。本文将深入分析Otter哈希表在并发Set和Delete操作时的线程安全性设计。
并发操作的基本原理
Otter哈希表采用了分段锁的设计思想,每个桶(bucket)都有独立的互斥锁。这种设计允许多个操作在不同桶上并行执行,同时保证了同一桶上的操作是串行化的。
当执行Set操作时,首先会锁定目标桶,然后检查表是否正在扩容或已有新表存在。这些检查确保了操作不会在即将被废弃的旧表上执行,从而避免了数据丢失。
扩容过程中的并发控制
哈希表扩容是一个关键点,需要考虑与常规操作的并发安全性。Otter采用了以下机制:
-
双重检查:在Set操作开始时,先检查是否有扩容正在进行(m.resizeInProgress()),再检查是否已有新表存在(m.newerTableExists(t))。这两次检查的顺序与扩容过程中的操作顺序相反,形成了有效的同步屏障。
-
桶锁保证:即使两个操作分别作用于不同桶,扩容过程中的copyBuckets函数也会获取每个桶的锁。这意味着:
- 如果Set操作先于扩容操作锁定桶,扩容操作会等待Set完成
- 如果扩容操作先锁定桶,Set操作会通过检查发现扩容正在进行而重试
-
等待机制:当检测到扩容正在进行时,Set操作会主动释放当前桶锁并等待扩容完成(m.waitForResize()),然后重试整个操作。
设计取舍与优化
在讨论中曾提出是否移除双重检查的优化建议,但经过分析发现这些检查是必要的:
-
防止数据丢失:如果移除检查,可能在扩容已复制完目标桶后才执行Set操作,导致写入旧表而丢失数据。
-
性能考量:虽然检查增加了少量开销,但避免了更昂贵的错误恢复和数据一致性问题。
-
正确性优先:在并发数据结构设计中,正确性始终是首要考虑因素,不能为了性能而牺牲正确性。
实际应用启示
Otter哈希表的设计为开发者提供了几个重要启示:
-
细粒度锁:通过桶级别的锁实现了更高的并发度,这是现代并发数据结构设计的常见模式。
-
状态检查:在操作前进行必要的状态检查,可以避免许多并发问题。
-
有序同步:反向的检查顺序确保了与扩容操作的合理交互。
-
等待而非自旋:当检测到冲突时,采用等待策略而非忙等待,提高了系统整体效率。
这种设计在保证线程安全的同时,也提供了较高的性能,是并发数据结构设计的优秀实践案例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01