MovieLLM-code 开源项目使用教程
2024-09-27 05:11:20作者:胡易黎Nicole
1. 项目介绍
MovieLLM-code 是一个旨在通过 AI 生成高质量合成数据以增强长视频理解的开源项目。该项目利用 GPT-4 和文本到图像模型生成详细的剧本和相应的视觉内容,从而创建合成的高质量数据。这些数据用于训练多模态大语言模型,以提升视频理解能力。
项目的主要功能包括:
- 数据生成代码
- 训练代码
- 视频评估代码
2. 项目快速启动
安装依赖
首先,克隆项目仓库并安装所需的依赖包:
git clone https://github.com/Deaddawn/MovieLLM-code.git
cd MovieLLM-code
# 克隆 LLaMA-VID 仓库
git clone https://github.com/dvlab-research/LLaMA-VID.git
mv eval_movie_qa.py calculate.py LLaMA-VID
mv run_llamavid_movie_answer.py LLaMA-VID/llamavid/serve
# 创建并激活 conda 环境
conda create -n MovieLLM python=3.10 -y
conda activate MovieLLM
# 安装 LLaMA-VID 依赖
cd LLaMA-VID
pip install -e .
# 安装额外的视频训练包
pip install ninja
pip install flash-attn --no-build-isolation
模型准备
下载预训练模型权重并组织数据结构:
# 下载预训练权重
wget <预训练权重链接>
# 组织数据结构
mkdir -p LLaMA-VID/work_dirs/llama-vid/llama-vid-7b-full-224-long-video-MovieLLM
mv <下载的权重文件> LLaMA-VID/work_dirs/llama-vid/llama-vid-7b-full-224-long-video-MovieLLM
运行推理
处理长视频并进行推理:
cd LLaMA-VID
python llamavid/serve/run_llamavid_movie.py \
--model-path work_dirs/llama-vid/llama-vid-7b-full-224-long-video \
--video-file <path_to_your_processed_video_file> \
--load-4bit
3. 应用案例和最佳实践
应用案例
MovieLLM-code 可以应用于以下场景:
- 视频内容生成:利用 AI 生成高质量的视频内容,适用于影视制作、广告创意等领域。
- 视频理解与分析:通过生成的数据训练模型,提升视频内容的理解和分析能力,适用于视频推荐、内容审核等应用。
最佳实践
- 数据生成:使用 GPT-4 生成详细的剧本,并通过文本到图像模型生成相应的视觉内容。
- 模型训练:基于生成的数据进行模型训练,优化视频理解能力。
- 评估与优化:通过评估代码对模型进行评估,并根据结果进行优化。
4. 典型生态项目
- LLaMA-VID:该项目的基础框架,提供了视频理解和生成的核心功能。
- Video-ChatGPT:用于短视频评估的工具,提供了量化评估的方法。
- MovieNet:用于数据预处理的原始数据集,提供了长视频数据。
通过这些生态项目的结合,MovieLLM-code 能够构建一个完整的视频理解和生成解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178