MovieLLM-code 开源项目使用教程
2024-09-27 05:11:20作者:胡易黎Nicole
1. 项目介绍
MovieLLM-code 是一个旨在通过 AI 生成高质量合成数据以增强长视频理解的开源项目。该项目利用 GPT-4 和文本到图像模型生成详细的剧本和相应的视觉内容,从而创建合成的高质量数据。这些数据用于训练多模态大语言模型,以提升视频理解能力。
项目的主要功能包括:
- 数据生成代码
- 训练代码
- 视频评估代码
2. 项目快速启动
安装依赖
首先,克隆项目仓库并安装所需的依赖包:
git clone https://github.com/Deaddawn/MovieLLM-code.git
cd MovieLLM-code
# 克隆 LLaMA-VID 仓库
git clone https://github.com/dvlab-research/LLaMA-VID.git
mv eval_movie_qa.py calculate.py LLaMA-VID
mv run_llamavid_movie_answer.py LLaMA-VID/llamavid/serve
# 创建并激活 conda 环境
conda create -n MovieLLM python=3.10 -y
conda activate MovieLLM
# 安装 LLaMA-VID 依赖
cd LLaMA-VID
pip install -e .
# 安装额外的视频训练包
pip install ninja
pip install flash-attn --no-build-isolation
模型准备
下载预训练模型权重并组织数据结构:
# 下载预训练权重
wget <预训练权重链接>
# 组织数据结构
mkdir -p LLaMA-VID/work_dirs/llama-vid/llama-vid-7b-full-224-long-video-MovieLLM
mv <下载的权重文件> LLaMA-VID/work_dirs/llama-vid/llama-vid-7b-full-224-long-video-MovieLLM
运行推理
处理长视频并进行推理:
cd LLaMA-VID
python llamavid/serve/run_llamavid_movie.py \
--model-path work_dirs/llama-vid/llama-vid-7b-full-224-long-video \
--video-file <path_to_your_processed_video_file> \
--load-4bit
3. 应用案例和最佳实践
应用案例
MovieLLM-code 可以应用于以下场景:
- 视频内容生成:利用 AI 生成高质量的视频内容,适用于影视制作、广告创意等领域。
- 视频理解与分析:通过生成的数据训练模型,提升视频内容的理解和分析能力,适用于视频推荐、内容审核等应用。
最佳实践
- 数据生成:使用 GPT-4 生成详细的剧本,并通过文本到图像模型生成相应的视觉内容。
- 模型训练:基于生成的数据进行模型训练,优化视频理解能力。
- 评估与优化:通过评估代码对模型进行评估,并根据结果进行优化。
4. 典型生态项目
- LLaMA-VID:该项目的基础框架,提供了视频理解和生成的核心功能。
- Video-ChatGPT:用于短视频评估的工具,提供了量化评估的方法。
- MovieNet:用于数据预处理的原始数据集,提供了长视频数据。
通过这些生态项目的结合,MovieLLM-code 能够构建一个完整的视频理解和生成解决方案。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 Jetson TX2开发板官方资源完全指南:从入门到精通 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1