LibreNMS监控Cisco C6800交换机SNMP响应延迟问题分析与解决方案
问题背景
在使用LibreNMS网络管理系统对Cisco C6800系列交换机进行监控时,部分用户报告在2024年12月更新后出现了严重的SNMP响应延迟问题。主要表现为设备在LibreNMS轮询期间出现超时,或完全停止响应所有SNMP请求。
问题现象
受影响的Cisco C6800交换机在系统日志中会记录类似以下信息:
%SNMP-3-RESPONSE_DELAYED: processing GetNext of ciscoMgmt.661.1.3.1 (19928 msecs)
%SNMP-3-RESPONSE_DELAYED: processing GetNext of ciscoMgmt.661.1.3.1.1.6 (20264 msecs)
这些延迟信息表明交换机在处理特定MIB(OID)时出现了性能问题,响应时间长达20秒左右,严重影响监控系统的正常运行。
根本原因分析
经过深入调查,发现问题根源在于CISCO-WAN-3G-MIB的使用。这个MIB与3G无线广域网模块相关,但在某些C6800交换机上,当LibreNMS通过SNMP bulkwalk方式查询这些OID时,会导致交换机SNMP进程资源占用过高,甚至陷入某种循环状态。
值得注意的是:
- 并非所有C6800交换机都会受到影响,这与设备的具体配置和硬件模块有关
- 问题在LibreNMS 24.11.0版本之前不存在,但在后续版本中出现
- 即使无线模块在LibreNMS中被禁用,系统仍会尝试查询这些OID
解决方案
方案一:禁用SNMP bulkwalk方式查询特定OID
这是最推荐的解决方案,通过配置LibreNMS不对特定OID使用bulkwalk方式查询:
lnms config:set os.ios.oids.no_bulk '["CISCO-WAN-3G-MIB::c3gModemStatus","CISCO-WAN-3G-MIB::c3gGsmCurrentBand","CISCO-WAN-3G-MIB::c3gGsmPacketService","CISCO-WAN-3G-MIB::c3gGsmCurrentRoamingStatus","CISCO-WAN-3G-MIB::c3gGsmSimStatus","CISCO-WAN-3G-MIB::c3gGsmNumberOfNearbyCell","CISCO-WAN-3G-MIB::c3gModemTemperature","CISCO-WAN-3G-MIB::c3gGsmIdentityTable"]'
这个命令会将这些OID标记为不使用bulkwalk方式查询,转而使用普通的snmpwalk方式,从而避免触发交换机的性能问题。
方案二:在交换机上配置SNMP视图排除
对于有权限管理交换机配置的用户,可以在交换机上配置SNMP视图来排除这些MIB:
snmp-server view cutdown ciscoWan3gMIB excluded
但需要注意的是,某些Cisco IOS版本可能不完全支持这种排除方式,或者需要更精确的OID指定。
方案三:物理移除MIB文件
作为临时解决方案,可以将CISCO-WAN-3G-MIB文件从LibreNMS服务器的mibs/cisco目录中移出,这样系统就无法识别和查询这些OID。但这不是推荐的长久解决方案,因为可能会影响其他设备的正常监控。
最佳实践建议
- 对于Cisco C6800系列交换机,建议优先采用方案一,因为它对系统的影响最小且最可控
- 在实施解决方案后,应密切监控交换机的SNMP响应时间和CPU利用率,确认问题已解决
- 对于大型网络环境,可以考虑在LibreNMS中为C6800设备创建特定的设备组,并应用这些配置
- 定期检查Cisco官方是否有针对此问题的固件更新
总结
Cisco C6800交换机与LibreNMS监控系统间的SNMP性能问题主要源于特定MIB的查询方式。通过调整查询策略或限制相关OID的访问,可以有效解决这一问题。网络管理员应根据自身环境选择最适合的解决方案,确保监控系统的稳定运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00