Sentence-Transformers中CLS模式下的向量差异解析
在自然语言处理领域,Sentence-Transformers是一个广泛使用的框架,用于生成高质量的句子嵌入表示。本文将深入探讨一个常见但容易被忽视的现象:当使用CLS模式时,为什么sentence_embedding向量与token_embeddings中的第一个token向量会存在差异。
CLS模式的工作原理
在BERT等Transformer架构中,CLS(Classification)token是一个特殊的标记,通常位于输入序列的开头。在Sentence-Transformers中,当配置pooling_mode_cls_token为true时,模型会使用CLS token的表示作为整个句子的嵌入。
理论上,这种情况下sentence_embedding应该与token_embeddings中的第一个向量(即CLS token的表示)完全相同。然而,实际应用中开发者可能会发现两者存在差异,这主要源于模型中的后处理模块。
归一化模块的影响
Sentence-Transformers框架中通常会包含一个Normalize模块,这是导致向量差异的主要原因。该模块会对sentence_embedding进行L2归一化处理,但不会影响原始的token_embeddings。
归一化过程将向量转换为单位长度(长度为1),这在计算相似度时非常有用:
- 归一化后的向量点积等价于计算原始向量的余弦相似度
- 有助于不同长度句子之间的公平比较
- 提高嵌入在相似度计算中的稳定性
技术验证与示例
通过以下代码可以清晰地观察到这一现象:
from sentence_transformers import SentenceTransformer
from sentence_transformers.models import Normalize
import torch
# 加载模型
model = SentenceTransformer("bert-base-cased")
# 添加归一化模块
model.add_module("normalize", Normalize())
# 获取嵌入表示
output = model.encode("示例文本", output_value=None)
# 比较向量
print(torch.equal(output["token_embeddings"][0], output["sentence_embedding"])) # 输出False
在未添加归一化模块时,两个向量完全相同;添加后,sentence_embedding会被归一化,而token_embeddings保持不变。
实际应用建议
-
一致性处理:在比较或存储嵌入时,确保对所有向量采用相同的处理方式(归一化或非归一化)
-
性能考量:归一化会带来轻微的计算开销,但通常可以忽略不计
-
相似度计算:如果使用余弦相似度,归一化后的点积计算效率更高
-
模型检查:通过
print(model)可以查看模型包含的所有模块,确认是否存在归一化层
理解这一机制对于正确使用Sentence-Transformers框架至关重要,特别是在需要精确控制嵌入表示的场景中。开发者应根据具体应用需求决定是否使用归一化处理。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00