Apache Pegasus手动压缩任务进度检测问题解析
背景介绍
Apache Pegasus是一个分布式键值存储系统,它提供了手动压缩(manual compact)功能来优化存储性能。在实际使用过程中,用户发现pegasus_manual_compact.sh
脚本中的wait_manual_compact()
函数无法正确检测手动压缩任务的执行进度,导致任务状态判断出现错误。
问题现象
当用户执行如下命令时:
sh pegasus_manual_compact.sh -c {meta_server_list} -a {table_name} --bottommost_level_compaction force
wait_manual_compact()
函数会持续输出类似日志:
[35s] 0 finished, 8 not finished (0 in queue, 0 in running), estimate remaining unknown seconds. table [**] manual compaction is running now.
即使手动压缩任务已经完成,该函数仍会持续输出上述信息,导致封装工具基于此输出判断任务进度时出现超时失败。
根本原因分析
问题的根源在于wait_manual_compact()
函数无法正确解析remote_command -t replica-server replica.query-compact ${app_id}
命令的输出结果。该命令的输出格式在最新版本中发生了变化:
最新版本输出格式:
CALL [replica-server] [10.1.132.34:8171] succeed:
8 processed, 0 not found
4.0@10.1.132.34:8171@P : {"last_finish":"-","last_used_ms":"-","recent_enqueue_at":"-","recent_start_at":"-"}
4.1@10.1.132.34:8171@P : {"last_finish":"-","last_used_ms":"-","recent_enqueue_at":"-","recent_start_at":"-"}
...
旧版本输出格式:
CALL [replica-server] [10.1.132.36:8171] succeed: 8 processed, 0 not found
4.0@10.1.132.36:8171@P : last finish at [-]
4.1@10.1.132.36:8171@P : last finish at [-]
...
技术影响
-
进度监控失效:脚本无法准确获取各分片的压缩状态,导致无法正确判断整体任务完成情况。
-
自动化工具异常:依赖此脚本输出的自动化运维工具会出现误判,可能导致不必要的人工干预或错误的后续操作。
-
运维效率降低:管理员需要额外验证任务实际状态,增加了运维复杂度。
解决方案建议
-
输出格式适配:更新
wait_manual_compact()
函数,使其能够解析新版JSON格式的输出。 -
状态判断逻辑优化:不仅检查
last_finish
字段,还应考虑recent_start_at
等字段来综合判断任务状态。 -
版本兼容处理:实现能够同时处理新旧两种输出格式的解析逻辑。
-
增强日志输出:在解析失败时提供更详细的错误信息,帮助快速定位问题。
最佳实践
对于正在使用此功能的用户,建议:
-
检查当前Pegasus版本,确认输出格式变化情况。
-
如果需要临时解决方案,可以考虑回退到旧版本或手动验证任务状态。
-
关注社区对此问题的修复进展,及时更新相关脚本。
总结
此问题反映了分布式系统中命令接口变化对周边工具的影响。在系统升级过程中,不仅需要关注核心功能的变更,还需要确保配套工具的兼容性。对于Pegasus用户而言,理解这一问题的本质有助于更好地规划系统升级路径和运维策略。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0294- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









