KSim Gym 项目启动与配置教程
2025-05-20 23:39:01作者:侯霆垣
1. 项目目录结构及介绍
KSim Gym 是一个基于 K-Sim 的机器人强化学习环境,项目目录结构如下:
ksim-gym/
├── .github/ # GitHub 工作流文件
│ ├── workflows/
│ │ └── stable baseline/
├── .gitignore # Git 忽略文件
├── .pre-commit-config.yaml # pre-commit 配置文件
├── LICENSE # 开源协议文件
├── Makefile # Makefile 文件
├── README.md # 项目说明文件
├── convert.py # 模型转换脚本
├── pyproject.toml # Python 项目配置文件
├── requirements.txt # 项目依赖文件
├── train.ipynb # Jupyter 训练笔记本
├── train.py # 训练脚本
└── assets/ # 额外资源目录
.github/: 存放 GitHub 工作流的配置文件,用于自动化任务。.gitignore: 指定 Git 忽略的文件和目录,以避免将不必要的文件提交到仓库。.pre-commit-config.yaml: pre-commit 配置文件,用于在提交前自动执行一些任务,如清理代码。LICENSE: 开源协议文件,本项目采用 MIT 协议。Makefile: Makefile 文件,用于构建和运行项目。README.md: 项目说明文件,介绍了项目的相关信息和使用方法。convert.py: 模型转换脚本,用于将训练好的模型转换为可在真实机器人上部署的格式。pyproject.toml: Python 项目配置文件,定义了项目的元数据和依赖。requirements.txt: 项目依赖文件,列出了项目运行所需的第三方库。train.ipynb: Jupyter 训练笔记本,用于训练机器人控制器。train.py: 训练脚本,用于在命令行中训练机器人控制器。assets/: 额外资源目录,用于存放模型文件、视频等。
2. 项目的启动文件介绍
项目的启动文件主要是 train.py 脚本,该脚本用于在命令行中启动训练过程。以下是启动文件的简要介绍:
# train.py
import argparse
import sys
# 解析命令行参数
parser = argparse.ArgumentParser(description='Train a robot controller with reinforcement learning.')
# 添加参数
parser.add_argument('--max_steps', type=int, default=1000000, help='Number of training steps.')
# 解析参数
args = parser.parse_args()
# 执行训练
if __name__ == '__main__':
# 省略具体的训练代码
pass
通过运行 python train.py --help 命令,可以查看所有可用的命令行参数。
3. 项目的配置文件介绍
项目的配置文件主要包括 pyproject.toml 和 requirements.txt。
pyproject.toml文件定义了项目的元数据和依赖,例如:
[project]
name = "ksim-gym"
version = "0.1.0"
description = "Train and deploy your own humanoid robot controller in 700 lines of Python"
authors = ["Your Name <your.email@example.com>"]
dependencies = [
"jax",
"jax[cuda12]"
]
requirements.txt文件列出了项目运行所需的第三方库,例如:
numpy
jax
jaxlib
optax
chex
gin-config
flax
dmc
通过运行 pip install -r requirements.txt 命令,可以安装所有依赖库。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140