KSim Gym 项目启动与配置教程
2025-05-20 23:39:01作者:侯霆垣
1. 项目目录结构及介绍
KSim Gym 是一个基于 K-Sim 的机器人强化学习环境,项目目录结构如下:
ksim-gym/
├── .github/ # GitHub 工作流文件
│ ├── workflows/
│ │ └── stable baseline/
├── .gitignore # Git 忽略文件
├── .pre-commit-config.yaml # pre-commit 配置文件
├── LICENSE # 开源协议文件
├── Makefile # Makefile 文件
├── README.md # 项目说明文件
├── convert.py # 模型转换脚本
├── pyproject.toml # Python 项目配置文件
├── requirements.txt # 项目依赖文件
├── train.ipynb # Jupyter 训练笔记本
├── train.py # 训练脚本
└── assets/ # 额外资源目录
.github/: 存放 GitHub 工作流的配置文件,用于自动化任务。.gitignore: 指定 Git 忽略的文件和目录,以避免将不必要的文件提交到仓库。.pre-commit-config.yaml: pre-commit 配置文件,用于在提交前自动执行一些任务,如清理代码。LICENSE: 开源协议文件,本项目采用 MIT 协议。Makefile: Makefile 文件,用于构建和运行项目。README.md: 项目说明文件,介绍了项目的相关信息和使用方法。convert.py: 模型转换脚本,用于将训练好的模型转换为可在真实机器人上部署的格式。pyproject.toml: Python 项目配置文件,定义了项目的元数据和依赖。requirements.txt: 项目依赖文件,列出了项目运行所需的第三方库。train.ipynb: Jupyter 训练笔记本,用于训练机器人控制器。train.py: 训练脚本,用于在命令行中训练机器人控制器。assets/: 额外资源目录,用于存放模型文件、视频等。
2. 项目的启动文件介绍
项目的启动文件主要是 train.py 脚本,该脚本用于在命令行中启动训练过程。以下是启动文件的简要介绍:
# train.py
import argparse
import sys
# 解析命令行参数
parser = argparse.ArgumentParser(description='Train a robot controller with reinforcement learning.')
# 添加参数
parser.add_argument('--max_steps', type=int, default=1000000, help='Number of training steps.')
# 解析参数
args = parser.parse_args()
# 执行训练
if __name__ == '__main__':
# 省略具体的训练代码
pass
通过运行 python train.py --help 命令,可以查看所有可用的命令行参数。
3. 项目的配置文件介绍
项目的配置文件主要包括 pyproject.toml 和 requirements.txt。
pyproject.toml文件定义了项目的元数据和依赖,例如:
[project]
name = "ksim-gym"
version = "0.1.0"
description = "Train and deploy your own humanoid robot controller in 700 lines of Python"
authors = ["Your Name <your.email@example.com>"]
dependencies = [
"jax",
"jax[cuda12]"
]
requirements.txt文件列出了项目运行所需的第三方库,例如:
numpy
jax
jaxlib
optax
chex
gin-config
flax
dmc
通过运行 pip install -r requirements.txt 命令,可以安装所有依赖库。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134