Spring Modulith 1.4 M1 发布:模块化架构的新篇章
Spring Modulith 是一个专注于帮助开发者构建模块化 Spring Boot 应用程序的框架。它提供了一套工具和方法论,使得在单体应用中实现清晰的模块边界、依赖管理和架构可视化成为可能。通过 Spring Modulith,开发者可以享受到模块化架构带来的好处,同时保留单体应用部署的便利性。
核心特性更新
1. AWS 集成迁移
1.4 M1 版本中移除了对 AWS 的直接集成,转而推荐使用 Spring Cloud AWS 的端口实现。这一变化体现了 Spring Modulith 更加专注于核心模块化功能,而将云服务集成这类功能交给更专业的项目来处理。开发者现在可以通过 Spring Cloud AWS 来获得更完整、更稳定的 AWS 服务集成能力。
2. 编程式接口检测
新版本引入了通过编程方式检测 NamedInterfaces 的能力。这一改进使得开发者可以更灵活地定义和识别模块间的接口契约,不再局限于注解方式。例如,现在可以通过代码动态注册接口作为模块间的通信契约,这对于需要动态生成接口或条件化加载接口的场景特别有用。
3. 迁移至 Micrometer Observations API
Spring Modulith 1.4 M1 将其监控指标系统迁移到了 Micrometer 的 Observations API。这一变化带来了更现代化、更一致的监控体验,与 Spring 生态系统的其他部分保持同步。Observations API 提供了更丰富的上下文信息,能够更好地支持分布式追踪场景,同时也简化了监控配置。
架构可视化增强
1. PlantUML 图表定制
新版本允许开发者为生成的 PlantUML 图表注册皮肤参数,这意味着可以更精细地控制架构图的视觉呈现。开发者现在可以定义统一的颜色方案、字体样式等,使生成的架构图更符合团队或企业的视觉规范。
2. 应用模块画布改进
应用模块画布(Application Module Canvas)的渲染效果得到了显著提升。这一可视化工具现在能够更清晰地展示模块间的依赖关系、接口定义和事件流,帮助团队更好地理解和沟通系统架构。
开发者体验优化
1. 模块元数据检测增强
ModulithMetadata.of(String) 方法现在能够自动检测给定包路径下使用 @Modulithic 注解的类。这一改进简化了模块化配置,减少了样板代码,使得开发者可以更专注于业务模块的定义。
2. 违规检测过滤
新版本提供了对架构违规(Violations)的过滤能力。当验证模块边界时,开发者现在可以定义哪些类型的违规应该被忽略,这对于渐进式迁移现有项目或处理特殊情况非常有用。
3. 文档内联代码处理改进
Asciidoctor 集成现在能够更准确地处理本地方法引用,解决了之前版本中内联代码生成不正确的问题。这使得生成的文档更加准确可靠。
技术栈升级
Spring Modulith 1.4 M1 同步升级了其依赖的技术栈:
- 基于 Spring Boot 3.5 M1 构建
- 采用 Micrometer Tracing 1.5 M1 实现分布式追踪
- 升级至 ArchUnit 0.29 版本,提供更强大的架构测试能力
- 使用 Structurizr 3.1 进行架构可视化
这些升级确保了 Spring Modulith 能够充分利用最新 Spring 生态系统提供的功能和性能改进。
实际应用建议
对于考虑采用 Spring Modulith 的团队,1.4 M1 版本带来了几个值得注意的变化:
-
迁移策略:如果项目当前使用了 Spring Modulith 的 AWS 集成,需要规划迁移到 Spring Cloud AWS 的方案。
-
监控调整:由于迁移到了 Observations API,现有的监控仪表盘可能需要相应调整以适配新的指标格式。
-
架构验证:新的违规过滤功能可以帮助团队更灵活地处理遗留代码的模块化迁移,可以制定分阶段的架构改进计划。
-
文档生成:利用增强的 PlantUML 支持,团队可以建立统一的架构图视觉标准,提升文档的专业性和一致性。
Spring Modulith 1.4 M1 的这些改进,使得在 Spring Boot 应用中实施模块化架构变得更加简单和高效,为构建可维护、可扩展的企业级应用提供了坚实的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00