Loguru项目中自定义异常无法序列化的解决方案
2025-05-10 09:02:49作者:龚格成
问题背景
在使用Python日志库Loguru时,开发者可能会遇到自定义异常无法被序列化的问题。具体表现为当尝试记录包含自定义异常的日志时,系统抛出_pickle.PicklingError
错误,提示无法pickle自定义异常类。
错误现象
典型的错误信息如下:
_pickle.PicklingError: Can't pickle <class 'app_core.utils.exceptions.ReqNetError'>: attribute lookup ReqNetError on app_core.utils.exceptions failed
这种错误通常发生在以下场景:
- 使用Loguru的异步日志记录功能(设置
enqueue=True
) - 尝试记录包含自定义异常的日志
- 自定义异常类定义存在问题
问题根源
该问题的根本原因在于Python的pickle机制无法正确序列化自定义异常类。在Loguru的异步日志记录中,日志消息需要通过pickle序列化后在进程间传递。当自定义异常类不符合pickle的要求时,就会导致序列化失败。
常见的原因包括:
- 异常类定义在动态生成的代码中
- 异常类没有正确的
__module__
属性 - 异常类定义在
__init__.py
文件中 - 异常类使用了动态生成的方式(如使用
type()
或工厂函数创建)
解决方案
方案一:确保异常类可序列化
自定义异常类需要满足以下条件才能被正确序列化:
- 定义在模块的顶层,而不是函数内部
- 具有正确的
__module__
属性 - 避免使用动态生成的方式创建异常类
对于使用工厂函数生成的异常类,可以修改为传统定义方式:
class ReqNetError(APIException):
code = 1014
msg = "网络请求错误"
def __init__(self, msg=None, task_guid=None):
self.msg = msg or self.msg
super().__init__(self.msg)
方案二:升级Loguru版本
Loguru 0.7.2版本已经对这类问题做了优化处理。确保你使用的是最新版本:
pip install -U loguru
方案三:正确使用日志记录方法
避免直接将异常对象作为参数传递给日志方法:
# 错误用法 - 会导致序列化问题
try:
raise ReqNetError("Message")
except Exception as err:
logger.error("An error occurred: {}", err) # err会被pickle
# 正确用法
try:
raise ReqNetError("Message")
except Exception:
logger.exception("An error occurred") # 自动记录异常信息
最佳实践
-
定义规范的异常类:确保异常类定义在模块顶层,使用传统类定义方式而非动态生成。
-
测试异常可序列化:在定义异常类后,进行简单的序列化测试:
import pickle pickle.loads(pickle.dumps(ReqNetError("Test")))
-
合理使用日志记录:
- 使用
logger.exception()
记录异常 - 避免将异常对象作为参数传递
- 对于需要记录的自定义信息,可以转换为字符串
- 使用
-
保持Loguru更新:定期更新到最新版本以获取更好的兼容性和功能。
总结
Loguru作为Python中强大的日志库,在异步记录时依赖pickle序列化机制。当遇到自定义异常无法序列化的问题时,开发者应从异常类定义和日志记录方式两方面入手解决。通过规范异常类定义、正确使用日志API以及保持库版本更新,可以有效避免这类问题的发生。
记住,良好的异常设计和日志实践不仅能解决技术问题,还能提高代码的可维护性和可读性。在项目初期就建立规范的异常处理机制,将为后续开发打下坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401