Apache Spark 结构化流处理实战示例教程
项目介绍
本教程基于GitHub上的开源项目 Spark-Structured-Streaming-Examples,旨在展示如何使用Apache Spark的结构化流处理功能进行数据实时分析。此项目包含了多种流处理的实例,从基础的数据源接入到复杂的流式计算操作,适合初学者及希望深化理解Spark Structured Streaming的开发者。
项目快速启动
环境准备
确保你的开发环境中安装了Apache Spark以及Scala或Python环境。推荐使用Spark的最新稳定版本,并配置好相关环境变量。
示例代码运行
-
克隆项目
git clone https://github.com/polomarcus/Spark-Structured-Streaming-Examples.git -
使用Spark Shell或构建应用
对于快速体验,可以通过Spark Shell加载例子。但为了更好的组织和管理代码,建议将代码打包成jar或使用sbt/maven项目结构。- 在Scala环境下,找到项目中的一个简单示例如
SimpleStreamExample.scala,通过SBT或者Maven编译并提交执行。
# 假设使用sbt sbt compile sbt "run MainClass"- 简单示例代码片段(以Scala为例)
基础的流处理应用通常涉及定义数据源、处理逻辑和输出模式。import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("Simple Stream Example").getOrCreate() import spark.implicits._ // 定义数据源,这里以构造数据为例 val dataStream = spark.readStream.format("rate").option("rowsPerSecond", 1).load() // 数据处理,例如简单的计数 val countedStream = dataStream.count() // 输出结果到控制台sink countedStream.writeStream.format("console").outputMode("complete").start().awaitTermination()
- 在Scala环境下,找到项目中的一个简单示例如
应用案例和最佳实践
在实际生产环境中,典型的使用场景包括但不限于实时日志分析、实时交易监控、社交媒体趋势分析等。最佳实践中,重要的是合理选择数据源(如Kafka)、高效地设计状态管理来处理迟到的数据,利用Watermark机制确保时间窗口计算的准确性,并关注性能调优,比如通过设置合理的batch interval和触发策略。
典型生态项目集成
Spark Structured Streaming可以轻松与大数据生态系统中的其他组件集成,例如:
-
与Kafka集成:用于读取或写入Kafka主题,实现高吞吐量的实时数据流处理。
val kafkaSource = spark.readStream.format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "topic-name").load() -
结合Delta Lake:用于存储具有事务性的流处理结果,支持历史数据查询。
val query = countedStream.writeStream .format("delta") .outputMode("append") .option("checkpointLocation", "/path/to/checkpoint") .toTable("streaming_table") -
与Hadoop HDFS或AWS S3集成,实现数据持久化。
以上就是基于Spark-Structured-Streaming-Examples项目的基本教程概览,涵盖了从项目简介到快速上手,再到深入应用的各个方面,希望能帮助你快速掌握Spark Structured Streaming的核心能力和应用技巧。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00