Boltz项目本地生成MSA的技术指南
2025-07-08 14:41:42作者:蔡丛锟
背景介绍
在蛋白质结构预测领域,多序列比对(MSA)的生成是一个关键步骤。Boltz项目作为一个基于深度学习的蛋白质复合物结构预测工具,其性能很大程度上依赖于高质量的MSA输入。本文将详细介绍如何在本地环境中生成与Boltz项目兼容的MSA文件。
MSA生成工具准备
要本地生成MSA,需要准备以下工具和数据库:
-
搜索工具:
- colabfold_search
- mmseqs2
-
数据库:
- uniref30_2302
- colabfold_envdb_202108
这些工具和数据库的配置应遵循Boltz项目白皮书中的说明。
技术要点解析
-
MSA配对的实现:
- 在训练阶段,Boltz项目会对不同链的MSA进行基于分类学的配对
- 这种配对使用了UniProt提供的分类学注释
- 但在预测阶段,用户无需手动处理MSA配对
-
本地生成与服务器生成的差异:
- 使用colabfold_search本地生成的MSA
- 与ColabFold服务器(colabfold_batch)生成的结果存在细微差异
- 这种差异主要源于配对策略的轻微不同
实践建议
-
预测阶段的MSA处理:
- 直接使用ColabFold服务器即可自动完成MSA配对
- 本地服务器部署可参考ColabFold的官方说明
- 配对结果与训练时使用的策略相近,足以满足预测需求
-
训练数据的获取:
- Boltz项目已公开训练和测试数据集的输入文件
- 这些文件包含了经过处理的MSA数据
- 可用于模型复现和性能验证
注意事项
-
MSA生成的一致性:
- 若追求完全一致的MSA生成结果
- 建议使用ColabFold服务器而非本地工具
- 本地生成工具的差异问题应向ColabFold项目反馈
-
性能优化:
- 对于大规模预测任务
- 本地部署可提高处理效率
- 但需接受微小的结果差异
通过本文的指导,研究人员可以更好地理解Boltz项目中MSA生成的技术细节,并根据实际需求选择合适的MSA生成方式。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1