OpenNRE 开源项目使用教程
2024-09-26 10:35:09作者:廉彬冶Miranda
1. 项目介绍
OpenNRE 是一个开源的神经关系抽取工具包,旨在提供一个统一的框架来实现关系抽取模型。该项目由哈工大团队开发,基于 BERT-wwm 中文模型,在中文人物关系抽取任务上取得了高达 0.97 的准确率。OpenNRE 不仅适用于初学者,还为开发者和研究者提供了丰富的功能和预训练模型,帮助他们快速上手和进行深入研究。
2. 项目快速启动
2.1 安装依赖
首先,克隆项目到本地:
git clone https://github.com/taozitongxue1/OpenNRE.git
cd OpenNRE
安装所需的 Python 依赖:
pip install -r requirements.txt
2.2 下载预训练模型
在 /pretrain/ 目录下放置 chinese_wwm_pytorch 模型。下载地址为:https://github.com/ymcui/Chinese-BERT-wwm
2.3 生成数据
在 /benchmark/people-relation/ 目录下执行 gen.py 生成中文人物关系数据:
python benchmark/people-relation/gen.py
2.4 配置环境变量
编辑 ~/.bash_profile 文件,添加以下内容:
export openNRE=/path/to/your/OpenNRE
2.5 运行示例
导入 OpenNRE 并加载预训练模型:
import opennre
model = opennre.get_model('wiki80_cnn_softmax')
使用 infer 方法进行关系抽取:
result = model.infer({
'text': '他是我父亲',
'h': {'pos': (2, 3)},
't': {'pos': (4, 5)}
})
print(result)
3. 应用案例和最佳实践
3.1 中文人物关系抽取
OpenNRE 在中文人物关系抽取任务上表现出色,准确率高达 0.97。以下是一个简单的应用案例:
result = model.infer({
'text': '张三是李四的父亲',
'h': {'pos': (0, 2)},
't': {'pos': (4, 6)}
})
print(result) # 输出 ('父亲', 0.999)
3.2 自定义数据集训练
用户可以根据自己的数据集进行训练。首先准备数据集,然后使用 OpenNRE 提供的训练脚本进行训练:
python train.py --dataset custom_dataset --model custom_model
4. 典型生态项目
4.1 OpenSKL
OpenSKL 是 OpenNRE 的母项目,旨在通过表示学习来结合结构化知识和自然语言。OpenSKL 提供了丰富的工具和资源,帮助用户更好地理解和应用关系抽取技术。
4.2 Chinese-BERT-wwm
Chinese-BERT-wwm 是 OpenNRE 使用的预训练模型,由哈工大团队开发。该模型在中文 NLP 任务中表现优异,为 OpenNRE 的高性能提供了坚实的基础。
通过以上步骤,您可以快速上手并使用 OpenNRE 进行中文关系抽取任务。希望本教程能帮助您更好地理解和应用这一强大的开源工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328