OpenNRE 开源项目使用教程
2024-09-26 10:42:40作者:廉彬冶Miranda
1. 项目介绍
OpenNRE 是一个开源的神经关系抽取工具包,旨在提供一个统一的框架来实现关系抽取模型。该项目由哈工大团队开发,基于 BERT-wwm 中文模型,在中文人物关系抽取任务上取得了高达 0.97 的准确率。OpenNRE 不仅适用于初学者,还为开发者和研究者提供了丰富的功能和预训练模型,帮助他们快速上手和进行深入研究。
2. 项目快速启动
2.1 安装依赖
首先,克隆项目到本地:
git clone https://github.com/taozitongxue1/OpenNRE.git
cd OpenNRE
安装所需的 Python 依赖:
pip install -r requirements.txt
2.2 下载预训练模型
在 /pretrain/ 目录下放置 chinese_wwm_pytorch 模型。下载地址为:https://github.com/ymcui/Chinese-BERT-wwm
2.3 生成数据
在 /benchmark/people-relation/ 目录下执行 gen.py 生成中文人物关系数据:
python benchmark/people-relation/gen.py
2.4 配置环境变量
编辑 ~/.bash_profile 文件,添加以下内容:
export openNRE=/path/to/your/OpenNRE
2.5 运行示例
导入 OpenNRE 并加载预训练模型:
import opennre
model = opennre.get_model('wiki80_cnn_softmax')
使用 infer 方法进行关系抽取:
result = model.infer({
'text': '他是我父亲',
'h': {'pos': (2, 3)},
't': {'pos': (4, 5)}
})
print(result)
3. 应用案例和最佳实践
3.1 中文人物关系抽取
OpenNRE 在中文人物关系抽取任务上表现出色,准确率高达 0.97。以下是一个简单的应用案例:
result = model.infer({
'text': '张三是李四的父亲',
'h': {'pos': (0, 2)},
't': {'pos': (4, 6)}
})
print(result) # 输出 ('父亲', 0.999)
3.2 自定义数据集训练
用户可以根据自己的数据集进行训练。首先准备数据集,然后使用 OpenNRE 提供的训练脚本进行训练:
python train.py --dataset custom_dataset --model custom_model
4. 典型生态项目
4.1 OpenSKL
OpenSKL 是 OpenNRE 的母项目,旨在通过表示学习来结合结构化知识和自然语言。OpenSKL 提供了丰富的工具和资源,帮助用户更好地理解和应用关系抽取技术。
4.2 Chinese-BERT-wwm
Chinese-BERT-wwm 是 OpenNRE 使用的预训练模型,由哈工大团队开发。该模型在中文 NLP 任务中表现优异,为 OpenNRE 的高性能提供了坚实的基础。
通过以上步骤,您可以快速上手并使用 OpenNRE 进行中文关系抽取任务。希望本教程能帮助您更好地理解和应用这一强大的开源工具。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
527
3.73 K
Ascend Extension for PyTorch
Python
336
400
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
882
589
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
170
React Native鸿蒙化仓库
JavaScript
302
353
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246