Spark on K8s Operator中Yunikorn任务组内存计算问题分析
问题背景
在Spark on K8s Operator项目的最新版本中,当用户为PySpark应用配置spark.executor.pyspark.memory参数时,发现了一个与Yunikorn调度器任务组内存计算相关的问题。该问题会导致Executor Pod无法被正确调度,始终处于Pending状态。
问题现象
用户在使用SparkApplication CRD提交PySpark作业时,如果设置了spark.executor.pyspark.memory配置项,会出现以下现象:
-
Executor Pod的资源请求(requests.memory)会正确包含三部分内存之和:
- 基础内存(spec.executor.memory)
- 内存开销(spec.executor.memoryOverhead)
- PySpark专用内存(spark.executor.pyspark.memory)
-
但是Yunikorn任务组注解(yunikorn.apache.org/task-groups)中的minResources.memory仅计算了前两部分,忽略了PySpark专用内存。
-
这导致Yunikorn调度器在分配资源时,发现实际Pod请求的内存大于任务组预留的内存,从而拒绝调度。
技术原理
在Spark on K8s架构中,当使用Yunikorn作为批处理调度器时,Operator会为Spark作业创建任务组(TaskGroup)注解。这个注解用于告诉Yunikorn:
- 作业需要的最小资源量(minResources)
- 各角色(Driver/Executor)的最小实例数(minMember)
对于PySpark应用,Spark会为Python进程分配额外的内存空间,这部分通过spark.executor.pyspark.memory参数配置。在资源计算时,这部分内存应该被包含在Executor的总内存需求中。
影响范围
该问题影响以下使用场景:
- 使用Spark on K8s Operator v2.0.0-rc.0版本
- 启用了Yunikorn调度器
- 运行PySpark应用
- 配置了
spark.executor.pyspark.memory参数
解决方案
项目维护者已经确认了这个问题,并正在开发修复方案。修复的核心思路是:
- 在计算Yunikorn任务组内存需求时,需要额外考虑PySpark专用内存配置
- 确保任务组minResources.memory与实际Pod请求的内存一致
临时规避方案
在官方修复发布前,用户可以采取以下临时方案:
- 将PySpark需要的内存合并到基础内存或内存开销中配置
- 暂时不使用Yunikorn的硬性Gang Scheduling特性
总结
这个问题揭示了Spark on K8s Operator在特殊场景下资源计算的不一致性。对于PySpark用户来说,理解各种内存参数的用途和计算方式非常重要。项目团队正在积极修复这个问题,预计将在下一个版本中包含相关修复。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00