Django Batch Select 使用与技术文档
1. 安装指南
在开始使用 Django Batch Select 前,请确保您的 Django 环境已经安装完毕。以下是安装 Django Batch Select 的步骤:
pip install django-batch-select
确保将 django-batch-select 添加到您的项目依赖中,并在项目的 settings.py 文件中的 INSTALLED_APPS 列表中包含 'batch_select'。
2. 项目的使用说明
Django Batch Select 是一个用于优化数据库查询的工具,旨在减少在处理外键关系时产生的查询数量,避免 "n+1 查询问题"。它通过在查询集(QuerySet)评估后执行单个额外的 SQL 查询来实现这一点,从而将所需的外部字段拼接在一起。
以下是一个使用 Django Batch Select 的基本示例:
from batch_select.models import BatchManager
class Tag(models.Model):
name = models.CharField(max_length=32)
class Section(models.Model):
name = models.CharField(max_length=32)
objects = BatchManager()
class Entry(models.Model):
title = models.CharField(max_length=255)
section = models.ForeignKey(Section, blank=True, null=True)
tags = models.ManyToManyField(Tag)
objects = BatchManager()
在上述模型中,BatchManager 被用于 Section 和 Entry 模型,使得可以通过 batch_select 方法预选择 ManyToManyField 和反向外键关系。
3. 项目API使用文档
以下是 Django Batch Select 的 API 使用文档:
使用 batch_select 方法
在查询集上使用 batch_select 方法,可以预选择指定的关系字段:
entries = Entry.objects.batch_select('tags').all()
这将返回所有 Entry 对象,并且每个对象将有一个 tags_all 属性,其中包含了与该条目关联的所有 Tag 对象。
如果需要为这些字段指定不同的名称,可以使用关键字参数:
entries = Entry.objects.batch_select(selected_tags='tags').all()
在这种情况下,Entry 对象将有一个 selected_tags 属性而不是 tags_all。
使用 Batch 对象进行过滤
如果需要对相关对象进行过滤,可以使用 Batch 对象:
from batch_select.models import Batch
entries = Entry.objects.batch_select(
tags_containing_blue=Batch('tags').filter(name__contains='blue')
)
这将返回所有 Entry 对象,并且每个对象将有一个 tags_containing_blue 属性,其中只包含名称中包含 "blue" 的 Tag 对象。
4. 项目安装方式
Django Batch Select 可以通过以下方式安装:
-
使用 pip 安装:
pip install django-batch-select -
在项目的
settings.py文件中添加'batch_select'到INSTALLED_APPS列表。
通过以上步骤,您就可以在 Django 项目中使用 Django Batch Select 来优化数据库查询了。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00