InternLM-XComposer多图SFT训练中的图像处理问题解析
在InternLM-XComposer项目进行多图监督微调(SFT)训练时,开发者可能会遇到图像处理相关的技术挑战。本文将深入分析这些问题的根源,并提供专业的解决方案。
问题现象分析
当输入单张图像时,模型运行正常;但当输入两张图像时,系统会抛出形状不匹配的错误。具体表现为:在尝试将图像reshape为[1,3,5,336,3,336]形状时,系统提示输入尺寸10160640与目标形状不兼容。
根本原因
经过技术分析,发现该问题主要由两个因素导致:
-
多图尺寸不一致:当输入的多张图像具有不同尺寸时,模型无法统一处理。InternLM-XComposer的原始实现假设所有输入图像具有相同尺寸。
-
批处理维度处理不当:模型中的sub_image处理逻辑默认只考虑单图情况,reshape操作的第一维度固定为1,无法适应多图场景。
解决方案
针对上述问题,我们提出以下技术解决方案:
-
统一图像尺寸: 修改data_mix.py中的Sample_dataset类,确保所有输入图像在预处理阶段被调整为统一尺寸。这一步是多图训练的基础保障。
-
调整reshape维度: 在build_mlp.py中,将sub_image的reshape操作第一维度改为动态值,使其能够适应不同数量的输入图像。具体修改如下:
sub_img = img.reshape(cnt,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous()其中cnt表示输入图像数量(单图为1,多图为实际图像数量)。
架构层面的考量
InternLM-XComposer的4khd模型在处理多图时还存在一些架构限制:
-
全局特征处理:当前实现仅使用第一张图像的特征作为全局特征(glb_img),这在多图场景下可能丢失重要信息。
-
特征拼接逻辑:输出图像特征的拼接方式假设了固定的特征长度,这在处理不同数量和大小的图像时可能导致维度不匹配。
最佳实践建议
-
对于多图训练任务,建议使用InternLM-XComposer 2.5版本提供的官方微调代码,该版本已针对多图、多轮数据进行了专门优化。
-
在自定义多图处理逻辑时,务必确保:
- 所有输入图像尺寸一致
- 批处理维度正确设置
- 特征提取和拼接逻辑能够适应不同数量的输入图像
-
在修改模型结构时,建议添加维度断言检查,如示例代码中的
assert temp_len == output_imgs[-1].shape[1],这有助于快速定位维度不匹配问题。
通过以上技术分析和解决方案,开发者可以更顺利地在InternLM-XComposer项目中实现多图监督微调训练,充分发挥多模态模型的潜力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00