InternLM-XComposer多图SFT训练中的图像处理问题解析
在InternLM-XComposer项目进行多图监督微调(SFT)训练时,开发者可能会遇到图像处理相关的技术挑战。本文将深入分析这些问题的根源,并提供专业的解决方案。
问题现象分析
当输入单张图像时,模型运行正常;但当输入两张图像时,系统会抛出形状不匹配的错误。具体表现为:在尝试将图像reshape为[1,3,5,336,3,336]形状时,系统提示输入尺寸10160640与目标形状不兼容。
根本原因
经过技术分析,发现该问题主要由两个因素导致:
-
多图尺寸不一致:当输入的多张图像具有不同尺寸时,模型无法统一处理。InternLM-XComposer的原始实现假设所有输入图像具有相同尺寸。
-
批处理维度处理不当:模型中的sub_image处理逻辑默认只考虑单图情况,reshape操作的第一维度固定为1,无法适应多图场景。
解决方案
针对上述问题,我们提出以下技术解决方案:
-
统一图像尺寸: 修改data_mix.py中的Sample_dataset类,确保所有输入图像在预处理阶段被调整为统一尺寸。这一步是多图训练的基础保障。
-
调整reshape维度: 在build_mlp.py中,将sub_image的reshape操作第一维度改为动态值,使其能够适应不同数量的输入图像。具体修改如下:
sub_img = img.reshape(cnt,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous()其中cnt表示输入图像数量(单图为1,多图为实际图像数量)。
架构层面的考量
InternLM-XComposer的4khd模型在处理多图时还存在一些架构限制:
-
全局特征处理:当前实现仅使用第一张图像的特征作为全局特征(glb_img),这在多图场景下可能丢失重要信息。
-
特征拼接逻辑:输出图像特征的拼接方式假设了固定的特征长度,这在处理不同数量和大小的图像时可能导致维度不匹配。
最佳实践建议
-
对于多图训练任务,建议使用InternLM-XComposer 2.5版本提供的官方微调代码,该版本已针对多图、多轮数据进行了专门优化。
-
在自定义多图处理逻辑时,务必确保:
- 所有输入图像尺寸一致
- 批处理维度正确设置
- 特征提取和拼接逻辑能够适应不同数量的输入图像
-
在修改模型结构时,建议添加维度断言检查,如示例代码中的
assert temp_len == output_imgs[-1].shape[1],这有助于快速定位维度不匹配问题。
通过以上技术分析和解决方案,开发者可以更顺利地在InternLM-XComposer项目中实现多图监督微调训练,充分发挥多模态模型的潜力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00