Monkey项目在RTX 3090显卡上的训练内存优化方案
2025-07-08 14:26:45作者:凤尚柏Louis
背景介绍
Monkey是一个基于Qwen架构的大型视觉语言模型项目,由Yuliang-Liu团队开发。该项目在训练过程中对显存要求较高,原团队使用80GB显存的A800显卡进行训练。然而,许多研究人员和开发者可能只有24GB显存的RTX 3090显卡可用,在尝试训练时会遇到CUDA内存不足的问题。
问题分析
当在RTX 3090(24GB显存)上训练Monkey模型时,即使采用了LoRA(低秩适应)技术和专门为3090优化的模型配置文件(modeling_qwen_nvdia3090.py),仍然会出现显存不足的错误。错误信息显示PyTorch尝试分配594MB显存时失败,而此时显存已基本耗尽。
解决方案
针对显存限制问题,可以考虑以下几种技术方案:
-
使用MiniMonkey版本:
- 原团队推荐使用MiniMonkey版本,这是Monkey的轻量级变体
- MiniMonkey专为资源有限的环境设计,可以在8块RTX 3090显卡上完成训练
-
梯度累积技术:
- 通过多批次累积梯度后再更新参数,减少单次显存需求
- 需要相应调整学习率等超参数
-
混合精度训练:
- 使用FP16或BF16混合精度训练
- 可显著减少显存占用,同时保持模型精度
-
激活检查点技术:
- 在训练过程中只保存部分激活值,其余在反向传播时重新计算
- 以计算时间换取显存空间
-
模型并行技术:
- 将模型拆分到多块GPU上
- 需要修改模型架构和训练脚本
实施建议
对于大多数使用RTX 3090的研究人员,推荐以下实施路径:
- 首先尝试MiniMonkey版本,这是最直接的解决方案
- 如果必须使用完整Monkey模型,可组合使用梯度累积和混合精度训练
- 对于更复杂的场景,可考虑激活检查点或模型并行技术
注意事项
在实施上述方案时,需要注意:
- 不同优化技术可能会影响模型最终性能
- 需要适当调整训练超参数
- 建议在修改前后进行严格的性能对比测试
- 监控训练过程中的显存使用情况和模型收敛性
通过合理选择和组合这些技术方案,研究人员可以在资源有限的环境下成功训练Monkey模型。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133