基于CLASSIQ SDK的约瑟夫森行波放大器微波回波抑制技术实现
约瑟夫森行波放大器(JTWPA)作为超导量子计算系统中的关键组件,其性能直接影响量子比特的读取质量。然而,放大器内部介电层中的微观双能级缺陷(TLS)会产生干扰性的微波回波信号,这一问题在最新研究中被深入探讨并提出了解决方案。本文将详细介绍如何利用CLASSIQ量子软件开发套件实现该研究中的回波抑制技术。
约瑟夫森行波放大器中的介电缺陷问题
约瑟夫森行波放大器由一系列约瑟夫森结和并联板电容器构成的分布式非线性网络组成。在实际器件中,介电材料不可避免地存在微观缺陷,这些缺陷表现为双能级系统(TLS)。当放大器工作时,这些TLS会与微波信号相互作用,产生不期望的回波信号,严重影响放大器的增益和噪声特性。
研究表明,这些TLS的动态行为可以用哈密顿量描述:H/ℏ = (Δ/2) σₓ + (Δ₀/2) σ_z。通过谱扩散模型可以很好地解释观察到的回波衰减现象,并提取出T₁和T₂等关键相干时间参数。
CLASSIQ SDK实现方案
物理系统建模
在CLASSIQ SDK中,我们可以构建JTWPA的量子电路模型。具体实现包括:
-
放大器主体建模:将JTWPA表示为约瑟夫森结和电容器的链式网络,每个节点都包含非线性元件和电容负载。
-
缺陷系统建模:将介电缺陷建模为TLS集合,每个TLS都遵循上述哈密顿量描述。通过谱扩散模型捕获它们的集体效应,将微观TLS动力学与可测量量联系起来。
脉冲序列设计与分析
-
回波序列实现:实现标准的两脉冲(Hahn回波)和三脉冲(受激回波)序列。这些序列对于探测缺陷诱导的回波和提取相干时间至关重要。
-
BLAST抑制策略:设计高功率BLAST脉冲模块,该脉冲在驱动脉冲之前或同时发送。根据研究,这种高功率激励可以"屏蔽"放大器,防止介电缺陷被激活。
-
微波信号仿真:利用CLASSIQ的仿真能力,设置时域仿真,将输入脉冲序列(包括驱动、泵浦和BLAST脉冲)应用于建模的JTWPA电路,监测输出以测量回波幅度并评估抑制效果。
参数校准与优化
-
关键参数提取:校准仿真参数(如脉冲幅度、持续时间和延迟)以复现研究中报告的回波动力学。
-
迭代优化:利用CLASSIQ SDK的优化例程调整BLAST脉冲时序和功率等参数,确保仿真在抑制后恢复低功率信号(即预期的放大器增益和噪声特性)。
技术实现要点
-
器件与缺陷建模:构建包含嵌入式TLS缺陷的JTWPA器件模型,模拟介电回波。
-
脉冲序列设计:定义标准Hahn回波和BLAST抑制脉冲。
-
仿真与数据分析:在低温条件下运行电路仿真,通过分析例程提取回波幅度和相干参数。
实现价值与展望
通过CLASSIQ SDK实现这一研究方案,不仅能够复现实验发现,还为进一步探索和优化抑制协议提供了平台。这种方法特别有价值的地方在于:
-
可以系统研究不同缺陷密度和分布对放大器性能的影响。
-
能够快速测试和优化各种抑制策略,而无需进行昂贵的实际实验。
-
为量子计算系统中其他类似噪声问题的研究提供了方法论参考。
未来工作可以扩展到更复杂的缺陷模型和更精细的脉冲控制策略,进一步提升约瑟夫森行波放大器的性能,为大规模量子计算系统的实现奠定基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00