Async-profiler在解析动态链接库导入符号时的缺陷分析
问题背景
Async-profiler是一款广泛使用的Java性能分析工具,它通过低开销的方式收集Java应用程序的性能数据。在最新版本中,发现了一个与动态链接库符号解析相关的严重缺陷,导致工具在某些环境下无法正常启动。
问题现象
当目标动态链接库(如libjvm.so)的导入符号同时分布在.rela.plt和.rela.dyn两个重定位段中时,async-profiler会启动失败,并显示"Could not set pthread hook"错误信息。这种情况常见于使用特定编译选项(如-fno-plt)构建的共享库。
技术分析
动态链接库重定位段
在ELF格式的共享库中,重定位信息通常存储在.rela.plt和.rela.dyn两个段中:
- .rela.plt:包含过程链接表(PLT)相关的重定位项,主要用于函数调用
- .rela.dyn:包含其他数据相关的重定位项,如全局变量等
传统上,函数导入符号主要出现在.rela.plt段中。但随着编译器优化选项(如-fno-plt)的使用,部分函数导入可能会被移到.rela.dyn段。
Async-profiler的解析逻辑
Async-profiler在初始化时需要解析目标库的导入符号,特别是几个关键的pthread函数。原始代码中存在以下逻辑缺陷:
- 代码首先检查.rela.plt段是否存在
- 如果存在,则只解析该段而跳过.rela.dyn段
- 如果不存在,才会尝试解析.rela.dyn段
这种非此即彼的逻辑导致当关键函数(如pthread_setspecific)位于.rela.dyn段,而其他函数位于.rela.plt段时,async-profiler会遗漏这些关键符号。
具体案例
在Liberica JDK 21的libjvm.so中,可以观察到:
- pthread_create、poll等函数位于.rela.plt段
- pthread_setspecific函数位于.rela.dyn段
由于async-profiler只解析了.rela.plt段,导致无法找到pthread_setspecific函数,最终造成线程钩子设置失败。
解决方案
修复方案相对简单:移除两个段解析之间的互斥关系,改为独立解析两个段。这样无论符号位于哪个段,都能被正确识别。具体修改包括:
- 将条件判断从"if-else"结构改为两个独立的"if"块
- 确保两个段都会被完整扫描
- 保持原有的符号添加逻辑不变
这种修改不会影响正常情况下的行为,同时解决了混合分布场景下的问题。
影响范围
该问题主要影响以下环境:
- 使用较新版本GCC编译的JDK(特别是启用了-fno-plt优化的版本)
- musl C库环境
- 某些特定的Linux发行版
对于大多数传统环境,由于符号通常集中在.rela.plt段,不会触发此问题。
总结
Async-profiler的这一缺陷揭示了在解析ELF文件时需要更加全面地考虑各种可能的符号分布情况。特别是在现代编译器和链接器的优化下,传统的假设可能不再成立。通过这次修复,工具增强了对不同编译环境下共享库的兼容性,为用户提供了更稳定的使用体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00