Semi-Design 树形控件动态设置默认选中项的实现方案
前言
在 Semi-Design 组件库中,Tree 树形控件是一个常用的交互组件,它能够以层级结构展示数据并支持节点选择。在实际开发中,我们经常会遇到需要动态设置默认选中项的需求,比如从接口获取数据后初始化选中状态。本文将详细介绍如何在 Semi-Design 中实现这一功能。
默认属性与受控属性的区别
Semi-Design 的 Tree 组件提供了两种设置选中项的方式:
-
defaultValue/defaultCheckedKeys:这些以
default开头的属性只在组件初次渲染时生效,后续的更新不会影响组件的选中状态。这种设计符合 React 的受控组件模式,default系列属性仅用于初始化。 -
value/checkedKeys:这些属性使组件成为受控组件,开发者可以通过 state 完全控制组件的选中状态,任何更新都会反映在 UI 上。
实现动态设置选中项的正确方式
要实现动态设置选中项,应该使用受控模式而非 defaultValue。以下是具体实现方案:
const [checkedKeys, setCheckedKeys] = useState([]);
// 从接口获取数据后更新选中状态
useEffect(() => {
async function fetchData() {
const response = await fetch('/api/checked-items');
const data = await response.json();
setCheckedKeys(data.checkedKeys);
}
fetchData();
}, []);
// 渲染树形控件
<Tree
treeDataSimpleJson={treeData}
checkedKeys={checkedKeys}
multiple
filterTreeNode
showFilteredOnly={true}
onChange={(keys) => setCheckedKeys(keys)}
style={{
width: '100%',
height: 500,
border: '1px solid var(--semi-color-border)',
}}
emptyContent="暂无数据"
/>
常见问题解决方案
-
数据加载时机问题:如果树数据和选中项数据是异步获取的,需要确保两者都加载完成后再渲染组件。可以使用条件渲染或加载状态来处理。
-
性能优化:对于大型树结构,频繁更新选中状态可能导致性能问题。可以考虑使用
useMemo优化树数据的处理,或使用shouldUpdate相关的性能优化手段。 -
数据一致性:确保传入的选中项 keys 与树数据中的节点 key 匹配,否则可能导致选中状态不生效。
最佳实践建议
-
始终优先考虑使用受控模式(value/checkedKeys)而非 defaultValue,除非你确定选中状态在组件生命周期内不会改变。
-
对于复杂的树形结构,考虑将树数据和选中状态管理封装成自定义 Hook,提高代码复用性。
-
在异步场景下,添加适当的加载状态和错误处理,提升用户体验。
-
定期检查 Semi-Design 的更新日志,了解 Tree 组件的最新特性和优化。
通过以上方案,开发者可以灵活地实现树形控件选中状态的动态管理,满足各种业务场景需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00