Turing.jl 项目中的自动微分测试重构实践
2025-07-04 13:55:45作者:吴年前Myrtle
引言
在Julia生态系统的概率编程语言Turing.jl中,自动微分(AD)是核心功能之一。近期开发团队针对项目中的AD测试进行了深入讨论和重构,旨在优化测试效率并提高代码质量。本文将详细介绍这一技术改进的背景、思路和具体实施方案。
问题背景
Turing.jl项目中存在大量通过完整运行采样器来测试AD功能的测试用例。这种方式虽然全面,但存在明显的性能问题:
- 计算资源消耗大:每次测试都需要运行完整的MCMC采样链
- 测试时间长:影响开发迭代速度
- 测试关注点混杂:将AD正确性测试与采样器正确性测试耦合在一起
技术改进方案
经过团队讨论,确定了以下改进方向:
分离测试关注点
将AD功能测试与采样器正确性测试分离:
- 采样器正确性测试:只需针对一个基准AD后端(如ForwardDiff)进行完整采样测试
- AD功能测试:通过直接验证梯度计算来测试各AD后端
建立标准化测试集
创建统一的测试用例集合,明确Turing.jl对AD系统的需求:
- 定义一组标准模型和对应的LogDensityFunction
- 这些测试用例将成为AD包集成测试的参考标准
- 保持测试集的持续更新,反映Turing.jl的最新需求
技术实现细节
测试结构重构
- 减少完整采样测试:仅对基准AD后端保留完整采样链测试
- 增加直接梯度验证:使用logdensity_and_gradient函数直接测试各AD后端
- 引入随机种子控制:使用StableRNGs确保测试可重复性
与DifferentiationInterface的整合
考虑与Julia生态中的DifferentiationInterface测试框架对接:
- 使测试用例能被DifferentiationInterface的测试功能消费
- 为未来全面采用DifferentiationInterface做准备
- 当前仍需直接测试logdensity_and_gradient,因为部分后端尚未完全迁移
实施进展
目前已在实验性包ModelTests.jl中开始实现:
- 收集典型模型作为测试用例
- 设计兼顾当前需求和未来扩展的测试接口
- 探索与DynamicPPL.TestUtils的整合方案
技术挑战与解决方案
后端兼容性问题
不同AD后端在Turing.jl中的集成方式各异:
- ForwardDiff等传统后端使用专用扩展
- Mooncake等新后端通过DifferentiationInterface集成
- 需要设计兼容两种方式的测试框架
测试准确性保障
- 对基准AD后端保留完整采样测试
- 梯度测试采用数值验证方法
- 建立结果一致性检查机制
未来工作方向
- 推动LogDensityProblemsAD全面采用DifferentiationInterface
- 完善测试用例集合,覆盖更多边界情况
- 优化测试执行效率,缩短CI时间
- 建立AD性能基准测试体系
总结
Turing.jl项目的AD测试重构工作体现了软件工程中"关注点分离"的重要原则。通过将AD功能测试与采样器测试解耦,不仅提高了测试效率,还使项目对AD后端的质量要求更加明确。这一改进将为Turing.jl的长期维护和生态扩展奠定坚实基础,同时也为Julia生态中其他需要AD支持的项目提供了有价值的参考模式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120