Turing.jl 项目中的自动微分测试重构实践
2025-07-04 07:29:35作者:吴年前Myrtle
引言
在Julia生态系统的概率编程语言Turing.jl中,自动微分(AD)是核心功能之一。近期开发团队针对项目中的AD测试进行了深入讨论和重构,旨在优化测试效率并提高代码质量。本文将详细介绍这一技术改进的背景、思路和具体实施方案。
问题背景
Turing.jl项目中存在大量通过完整运行采样器来测试AD功能的测试用例。这种方式虽然全面,但存在明显的性能问题:
- 计算资源消耗大:每次测试都需要运行完整的MCMC采样链
- 测试时间长:影响开发迭代速度
- 测试关注点混杂:将AD正确性测试与采样器正确性测试耦合在一起
技术改进方案
经过团队讨论,确定了以下改进方向:
分离测试关注点
将AD功能测试与采样器正确性测试分离:
- 采样器正确性测试:只需针对一个基准AD后端(如ForwardDiff)进行完整采样测试
- AD功能测试:通过直接验证梯度计算来测试各AD后端
建立标准化测试集
创建统一的测试用例集合,明确Turing.jl对AD系统的需求:
- 定义一组标准模型和对应的LogDensityFunction
- 这些测试用例将成为AD包集成测试的参考标准
- 保持测试集的持续更新,反映Turing.jl的最新需求
技术实现细节
测试结构重构
- 减少完整采样测试:仅对基准AD后端保留完整采样链测试
- 增加直接梯度验证:使用logdensity_and_gradient函数直接测试各AD后端
- 引入随机种子控制:使用StableRNGs确保测试可重复性
与DifferentiationInterface的整合
考虑与Julia生态中的DifferentiationInterface测试框架对接:
- 使测试用例能被DifferentiationInterface的测试功能消费
- 为未来全面采用DifferentiationInterface做准备
- 当前仍需直接测试logdensity_and_gradient,因为部分后端尚未完全迁移
实施进展
目前已在实验性包ModelTests.jl中开始实现:
- 收集典型模型作为测试用例
- 设计兼顾当前需求和未来扩展的测试接口
- 探索与DynamicPPL.TestUtils的整合方案
技术挑战与解决方案
后端兼容性问题
不同AD后端在Turing.jl中的集成方式各异:
- ForwardDiff等传统后端使用专用扩展
- Mooncake等新后端通过DifferentiationInterface集成
- 需要设计兼容两种方式的测试框架
测试准确性保障
- 对基准AD后端保留完整采样测试
- 梯度测试采用数值验证方法
- 建立结果一致性检查机制
未来工作方向
- 推动LogDensityProblemsAD全面采用DifferentiationInterface
- 完善测试用例集合,覆盖更多边界情况
- 优化测试执行效率,缩短CI时间
- 建立AD性能基准测试体系
总结
Turing.jl项目的AD测试重构工作体现了软件工程中"关注点分离"的重要原则。通过将AD功能测试与采样器测试解耦,不仅提高了测试效率,还使项目对AD后端的质量要求更加明确。这一改进将为Turing.jl的长期维护和生态扩展奠定坚实基础,同时也为Julia生态中其他需要AD支持的项目提供了有价值的参考模式。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133