PaddleEdu/paper-reproduction-tutorials 项目教程
2024-09-14 00:47:35作者:乔或婵
项目介绍
PaddleEdu/paper-reproduction-tutorials 是一个专注于论文复现技巧与 PaddlePaddle 优秀复现项目分享的开源项目。该项目旨在通过详细的代码复现路线和复现细节经验,帮助开发者快速完成论文代码复现。项目内容涵盖从入门级到高级技巧的经验分享,以及常用功能模块的代码示例。
项目快速启动
环境准备
-
安装 PaddlePaddle:
pip install paddlepaddle -
克隆项目仓库:
git clone https://github.com/PaddleEdu/paper-reproduction-tutorials.git cd paper-reproduction-tutorials
快速启动示例
以下是一个简单的示例,展示如何使用该项目中的代码进行前向对齐和训练对齐。
import paddle
import paddle.nn as nn
# 定义一个简单的模型
class SimpleModel(nn.Layer):
def __init__(self):
super(SimpleModel, self).__init__()
self.fc = nn.Linear(10, 1)
def forward(self, x):
return self.fc(x)
# 初始化模型和数据
model = SimpleModel()
data = paddle.randn([10, 10])
label = paddle.randn([10, 1])
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
# 前向对齐
output = model(data)
loss = criterion(output, label)
print(f"前向对齐损失: {loss.item()}")
# 训练对齐
for epoch in range(10):
output = model(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
optimizer.clear_grad()
print(f"Epoch {epoch}, 损失: {loss.item()}")
应用案例和最佳实践
案例1:使用 Swin Transformer 进行目标检测
该项目中包含了一个使用 Swin Transformer 进行目标检测的复现案例。通过该案例,开发者可以学习如何将 Swin Transformer 应用于实际的目标检测任务中。
案例2:基于 Paddle 框架的 ArcFace 论文复现
该项目还提供了一个基于 Paddle 框架的 ArcFace 论文复现案例,展示了如何在 Paddle 框架下实现人脸识别任务。
典型生态项目
PaddlePaddle 生态项目
- PaddleDetection:一个基于 PaddlePaddle 的目标检测工具包,支持多种目标检测模型。
- PaddleSeg:一个基于 PaddlePaddle 的图像分割工具包,支持多种图像分割模型。
- PaddleOCR:一个基于 PaddlePaddle 的 OCR 工具包,支持多种 OCR 模型。
通过这些生态项目,开发者可以进一步扩展和应用 PaddleEdu/paper-reproduction-tutorials 中的复现技巧。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134