Autoware城市数据集采集与处理技术实践
2025-05-24 20:44:40作者:龚格成
数据集背景与目标
Autoware自动驾驶框架需要针对城市复杂场景进行算法验证和性能测试,特别是隧道和桥梁等极端环境下的定位与建图能力。为此,技术团队开展了一次专门的城市数据集采集工作,旨在为Autoware的LOAM-Based Localization功能开发提供高质量的测试数据。
传感器配置方案
本次数据采集采用了专业级的传感器组合:
- 激光雷达:Hesai Pandar XT32,这是一款32线机械式激光雷达,具有360°水平视场角和40°垂直视场角
- 组合导航系统:Applanix POS LVX GNSS/INS,提供厘米级定位精度和稳定的姿态测量
传感器间通过PPS脉冲信号和GPRMC时间信息进行硬件级时间同步,确保数据的时间一致性。激光雷达采用Strongest回波模式工作,优先记录最强反射信号。
数据采集路线规划
采集路线经过精心设计,覆盖了典型的城市复杂场景:
- 长距离隧道场景:测试GNSS信号完全缺失环境下的定位能力
- 大型桥梁场景:评估高度变化和开阔水域环境对传感器的影响
- 城市道路混合场景:包含常规道路、交叉路口等典型城市元素
数据处理流程
原始数据格式
- 激光雷达数据:PCAP格式原始数据包,包含点云信息和时间同步标记
- GNSS/INS数据:T04格式原始数据及处理后的文本格式,包含位置、姿态和速度信息
- ROS2数据包:包含传感器原始话题和预处理数据
坐标系统说明
- GNSS/INS采用NED(北-东-地)坐标系
- 激光雷达坐标系定义:X轴向后,Y轴向右,Z轴向上
- 传感器间标定参数精确测量,包含位置偏移和姿态旋转
点云生成技术
使用LOAM算法框架进行点云建图,处理流程包括:
- 点云特征提取:分离角点和平面点特征
- 运动补偿:补偿车辆运动造成的点云畸变
- 地图优化:结合GNSS/INS信息进行全局优化
- 降采样处理:采用0.2米体素网格进行点云精简
数据集技术特点
- 多场景覆盖:完整包含城市典型复杂场景
- 时间同步精度:硬件级同步确保数据时间一致性
- 数据完整性:提供原始数据和处理后数据
- 坐标系明确:所有传感器坐标系关系清晰定义
- 动态物体标记:原始数据中包含动态物体信息
应用价值
该数据集特别适用于以下自动驾驶技术研发:
- 无GNSS环境下的定位算法测试
- 激光雷达建图算法评估
- 多传感器融合系统验证
- 自动驾驶系统在极端场景下的鲁棒性测试
技术挑战与解决方案
在数据采集和处理过程中,团队遇到了若干技术挑战:
- 时间同步问题:初期数据存在微小时间偏差,通过优化硬件连接和增加时间校验标记解决
- 动态物体干扰:采用基于运动一致性的滤波算法减少动态物体对地图的影响
- 大场景建图:使用MGRS投影坐标系处理大范围场景,避免坐标溢出
- 传感器标定:通过多位置观测和优化算法提高标定精度
数据集使用建议
对于希望使用该数据集的研究人员,建议:
- 首先了解各传感器的坐标系定义
- 注意GNSS/INS数据的后处理特性
- 对于定位测试,建议从部分场景开始逐步扩展到完整路线
- 可利用提供的不同特征点云进行算法针对性测试
该数据集的建立为Autoware框架的城市自动驾驶能力提升提供了重要的测试基础,特别是为隧道、桥梁等复杂场景下的定位算法开发提供了宝贵的真实数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210