Autoware城市数据集采集与处理技术实践
2025-05-24 05:18:30作者:龚格成
数据集背景与目标
Autoware自动驾驶框架需要针对城市复杂场景进行算法验证和性能测试,特别是隧道和桥梁等极端环境下的定位与建图能力。为此,技术团队开展了一次专门的城市数据集采集工作,旨在为Autoware的LOAM-Based Localization功能开发提供高质量的测试数据。
传感器配置方案
本次数据采集采用了专业级的传感器组合:
- 激光雷达:Hesai Pandar XT32,这是一款32线机械式激光雷达,具有360°水平视场角和40°垂直视场角
- 组合导航系统:Applanix POS LVX GNSS/INS,提供厘米级定位精度和稳定的姿态测量
传感器间通过PPS脉冲信号和GPRMC时间信息进行硬件级时间同步,确保数据的时间一致性。激光雷达采用Strongest回波模式工作,优先记录最强反射信号。
数据采集路线规划
采集路线经过精心设计,覆盖了典型的城市复杂场景:
- 长距离隧道场景:测试GNSS信号完全缺失环境下的定位能力
- 大型桥梁场景:评估高度变化和开阔水域环境对传感器的影响
- 城市道路混合场景:包含常规道路、交叉路口等典型城市元素
数据处理流程
原始数据格式
- 激光雷达数据:PCAP格式原始数据包,包含点云信息和时间同步标记
- GNSS/INS数据:T04格式原始数据及处理后的文本格式,包含位置、姿态和速度信息
- ROS2数据包:包含传感器原始话题和预处理数据
坐标系统说明
- GNSS/INS采用NED(北-东-地)坐标系
- 激光雷达坐标系定义:X轴向后,Y轴向右,Z轴向上
- 传感器间标定参数精确测量,包含位置偏移和姿态旋转
点云生成技术
使用LOAM算法框架进行点云建图,处理流程包括:
- 点云特征提取:分离角点和平面点特征
- 运动补偿:补偿车辆运动造成的点云畸变
- 地图优化:结合GNSS/INS信息进行全局优化
- 降采样处理:采用0.2米体素网格进行点云精简
数据集技术特点
- 多场景覆盖:完整包含城市典型复杂场景
- 时间同步精度:硬件级同步确保数据时间一致性
- 数据完整性:提供原始数据和处理后数据
- 坐标系明确:所有传感器坐标系关系清晰定义
- 动态物体标记:原始数据中包含动态物体信息
应用价值
该数据集特别适用于以下自动驾驶技术研发:
- 无GNSS环境下的定位算法测试
- 激光雷达建图算法评估
- 多传感器融合系统验证
- 自动驾驶系统在极端场景下的鲁棒性测试
技术挑战与解决方案
在数据采集和处理过程中,团队遇到了若干技术挑战:
- 时间同步问题:初期数据存在微小时间偏差,通过优化硬件连接和增加时间校验标记解决
- 动态物体干扰:采用基于运动一致性的滤波算法减少动态物体对地图的影响
- 大场景建图:使用MGRS投影坐标系处理大范围场景,避免坐标溢出
- 传感器标定:通过多位置观测和优化算法提高标定精度
数据集使用建议
对于希望使用该数据集的研究人员,建议:
- 首先了解各传感器的坐标系定义
- 注意GNSS/INS数据的后处理特性
- 对于定位测试,建议从部分场景开始逐步扩展到完整路线
- 可利用提供的不同特征点云进行算法针对性测试
该数据集的建立为Autoware框架的城市自动驾驶能力提升提供了重要的测试基础,特别是为隧道、桥梁等复杂场景下的定位算法开发提供了宝贵的真实数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134