Autoware城市数据集采集与处理技术实践
2025-05-24 05:18:30作者:龚格成
数据集背景与目标
Autoware自动驾驶框架需要针对城市复杂场景进行算法验证和性能测试,特别是隧道和桥梁等极端环境下的定位与建图能力。为此,技术团队开展了一次专门的城市数据集采集工作,旨在为Autoware的LOAM-Based Localization功能开发提供高质量的测试数据。
传感器配置方案
本次数据采集采用了专业级的传感器组合:
- 激光雷达:Hesai Pandar XT32,这是一款32线机械式激光雷达,具有360°水平视场角和40°垂直视场角
- 组合导航系统:Applanix POS LVX GNSS/INS,提供厘米级定位精度和稳定的姿态测量
传感器间通过PPS脉冲信号和GPRMC时间信息进行硬件级时间同步,确保数据的时间一致性。激光雷达采用Strongest回波模式工作,优先记录最强反射信号。
数据采集路线规划
采集路线经过精心设计,覆盖了典型的城市复杂场景:
- 长距离隧道场景:测试GNSS信号完全缺失环境下的定位能力
- 大型桥梁场景:评估高度变化和开阔水域环境对传感器的影响
- 城市道路混合场景:包含常规道路、交叉路口等典型城市元素
数据处理流程
原始数据格式
- 激光雷达数据:PCAP格式原始数据包,包含点云信息和时间同步标记
- GNSS/INS数据:T04格式原始数据及处理后的文本格式,包含位置、姿态和速度信息
- ROS2数据包:包含传感器原始话题和预处理数据
坐标系统说明
- GNSS/INS采用NED(北-东-地)坐标系
- 激光雷达坐标系定义:X轴向后,Y轴向右,Z轴向上
- 传感器间标定参数精确测量,包含位置偏移和姿态旋转
点云生成技术
使用LOAM算法框架进行点云建图,处理流程包括:
- 点云特征提取:分离角点和平面点特征
- 运动补偿:补偿车辆运动造成的点云畸变
- 地图优化:结合GNSS/INS信息进行全局优化
- 降采样处理:采用0.2米体素网格进行点云精简
数据集技术特点
- 多场景覆盖:完整包含城市典型复杂场景
- 时间同步精度:硬件级同步确保数据时间一致性
- 数据完整性:提供原始数据和处理后数据
- 坐标系明确:所有传感器坐标系关系清晰定义
- 动态物体标记:原始数据中包含动态物体信息
应用价值
该数据集特别适用于以下自动驾驶技术研发:
- 无GNSS环境下的定位算法测试
- 激光雷达建图算法评估
- 多传感器融合系统验证
- 自动驾驶系统在极端场景下的鲁棒性测试
技术挑战与解决方案
在数据采集和处理过程中,团队遇到了若干技术挑战:
- 时间同步问题:初期数据存在微小时间偏差,通过优化硬件连接和增加时间校验标记解决
- 动态物体干扰:采用基于运动一致性的滤波算法减少动态物体对地图的影响
- 大场景建图:使用MGRS投影坐标系处理大范围场景,避免坐标溢出
- 传感器标定:通过多位置观测和优化算法提高标定精度
数据集使用建议
对于希望使用该数据集的研究人员,建议:
- 首先了解各传感器的坐标系定义
- 注意GNSS/INS数据的后处理特性
- 对于定位测试,建议从部分场景开始逐步扩展到完整路线
- 可利用提供的不同特征点云进行算法针对性测试
该数据集的建立为Autoware框架的城市自动驾驶能力提升提供了重要的测试基础,特别是为隧道、桥梁等复杂场景下的定位算法开发提供了宝贵的真实数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140