Mbed-TLS项目中TLS 1.3握手失败问题分析与解决方案
问题背景
在使用Mbed-TLS库的ssl_client1示例程序进行HTTPS请求时,开发人员发现了一个与TLS 1.3协议相关的问题。当程序尝试连接特定服务器(api.sunrisesunset.io)时,TLS 1.3握手会失败,而强制使用TLS 1.2却能正常工作。
错误现象
在TLS 1.3握手过程中,程序报出以下错误:
ssl_tls13_generic.c:1689: psa_generate_key() returned -27648 (-0x6c00)
ssl_client.c:1012: <= write client hello
ssl_tls.c:4617: <= handshake
failed
! mbedtls_ssl_handshake returned -0x6c00
Last error was: -27648 - SSL - Internal error (eg, unexpected failure in lower-level module)
问题根源分析
经过深入分析,发现这个问题有两个关键原因:
-
PSA加密子系统未初始化:TLS 1.3实现依赖于PSA(Platform Security Architecture)加密子系统,而示例程序ssl_client1在默认配置下没有调用psa_crypto_init()初始化函数。这导致在尝试生成密钥时出现内部错误。
-
证书验证问题:当解决了PSA初始化问题后,又出现了证书验证失败的问题。这是因为:
- TLS 1.3强制要求严格的证书验证
- 示例程序中使用了MBEDTLS_SSL_VERIFY_OPTIONAL模式,这在TLS 1.3中不再被允许
- 程序没有正确加载服务器证书所需的根CA证书链
解决方案
针对上述问题,开发人员可以采取以下解决方案:
-
初始化PSA加密子系统: 在建立TLS连接前,务必调用psa_crypto_init()函数:
psa_crypto_init();
-
正确处理证书验证:
- 使用MBEDTLS_SSL_VERIFY_REQUIRED模式替代OPTIONAL模式
- 正确加载服务器信任的CA证书链:
mbedtls_x509_crt ca_cert; mbedtls_x509_crt_init(&ca_cert); mbedtls_x509_crt_parse_file(&ca_cert, "ca.pem"); mbedtls_ssl_conf_ca_chain(&conf, &ca_cert, NULL);
-
临时解决方案: 如果仅用于测试目的,可以强制使用TLS 1.2:
mbedtls_ssl_conf_max_version(&conf, MBEDTLS_SSL_MAJOR_VERSION_3, MBEDTLS_SSL_MINOR_VERSION_3);
技术背景
TLS 1.3与TLS 1.2在安全机制上有显著差异:
-
加密子系统依赖:TLS 1.3更深度集成了PSA加密架构,提供了更统一的加密接口和安全保证。
-
证书验证要求:TLS 1.3移除了对可选验证的支持,强制要求严格的证书验证,这是出于安全考虑的设计决策。
-
密钥交换机制:TLS 1.3使用了更安全的密钥交换机制,这也是为什么需要PSA加密子系统的支持。
最佳实践建议
-
生产环境使用:
- 总是初始化PSA加密子系统
- 配置完整的证书验证链
- 使用MBEDTLS_SSL_VERIFY_REQUIRED模式
-
示例程序改进: Mbed-TLS团队已经意识到示例程序的不足,计划在后续版本中改进ssl_client1示例,使其:
- 自动处理PSA初始化
- 提供更合理的证书验证默认配置
- 增加对TLS 1.3的完整支持
-
版本选择:
- 如果需要稳定性和向后兼容性,可以考虑使用Mbed-TLS 3.6 LTS版本
- 如果需要最新功能和完整TLS 1.3支持,可以考虑等待Mbed-TLS 4.0版本
总结
本文分析了Mbed-TLS项目中TLS 1.3握手失败的问题,揭示了其根本原因在于PSA加密子系统初始化和证书验证机制的差异。通过正确初始化加密子系统和配置证书验证链,开发者可以充分利用TLS 1.3的安全优势。Mbed-TLS团队也在持续改进库的实现和示例程序,以提供更好的开发者体验和安全保障。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









