Rust-Postgres 中自定义枚举类型的转换问题解析
2025-06-19 01:49:33作者:宣聪麟
在使用 Rust-Postgres 进行数据库操作时,处理自定义枚举类型是一个常见的需求。本文将通过一个实际案例,深入分析如何正确地在 Rust 和 PostgreSQL 之间转换自定义枚举类型。
问题背景
在 PostgreSQL 中定义了一个枚举类型:
CREATE TYPE layer_type AS ENUM ('sparse', 'dense');
在 Rust 代码中,开发者需要将这个枚举类型映射到 Rust 的枚举类型,并实现与 PostgreSQL 之间的双向转换。这涉及到两个主要场景:
- 使用 Diesel 进行同步数据库操作
- 使用 tokio-postgres 进行异步数据库操作
解决方案分析
1. 定义 Rust 枚举类型
首先需要定义两个 Rust 枚举类型:
#[derive(Debug, Clone, PartialEq, DbEnum)]
#[ExistingTypePath = "crate::schema::sql_types::LayerType"]
pub enum LayerType {
Sparse,
Dense,
}
#[derive(Debug, ToSql, FromSql)]
#[postgres(name = "layer_type", rename_all = "lowercase")]
pub enum PgLayerType {
Sparse,
Dense,
}
这里定义了两个枚举类型:
LayerType:用于 Diesel ORM 的同步操作PgLayerType:用于 tokio-postgres 的异步操作
2. 实现类型转换
为了在两个枚举类型之间进行转换,实现了 From trait:
impl From<LayerType> for PgLayerType {
fn from(layer_type: LayerType) -> PgLayerType {
match layer_type {
LayerType::Dense => Self::Dense,
LayerType::Sparse => Self::Sparse
}
}
}
3. 数据库操作中的使用
在异步数据库操作中,需要将枚举类型正确传递给 PostgreSQL:
let pg_layer_type: PgLayerType = new_item.type_.into();
let row = transaction.query_one("
INSERT INTO layers (tenant_id, map_id, layer_schema_id, name, description, type)
VALUES ($1, $2, $3, $4, $5, $6)
Returning *;",
&[
&new_item.tenant_id,
&new_item.map_id,
&new_item.layer_schema_id,
&new_item.name,
&new_item.description,
&pg_layer_type
]
).await?;
常见错误与排查
在实现过程中,开发者遇到了一个典型错误:
error deserializing column 6: cannot convert between the Rust type `&str` and the Postgres type `layer_type`
这个错误通常有以下几种原因:
- 类型不匹配:尝试将字符串直接传递给期望枚举类型的参数
- 转换位置错误:错误可能发生在查询结果的解析阶段,而非参数绑定阶段
- 派生宏使用不当:
ToSql和FromSql派生可能没有正确实现
最佳实践建议
- 明确区分同步和异步操作的枚举类型:如示例所示,为不同场景定义不同的枚举类型
- 实现类型转换:在相关类型之间实现
Fromtrait 以简化转换 - 仔细检查错误位置:数据库操作错误可能发生在查询执行或结果解析阶段
- 验证类型映射:确保 PostgreSQL 类型和 Rust 类型的名称和值完全匹配
通过遵循这些实践,可以有效地在 Rust 和 PostgreSQL 之间处理自定义枚举类型,避免常见的类型转换问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19