Meeting Minutes项目UI冻结与数据持久化问题解决方案
2025-06-12 06:43:33作者:凌朦慧Richard
背景分析
在Meeting Minutes项目开发过程中,我们遇到了两个关键性的技术挑战:用户界面(UI)在录音完成后的无响应问题,以及会议记录数据无法正确持久化保存的问题。这些问题直接影响了产品的核心功能和用户体验。
问题根源剖析
UI冻结问题
当用户完成会议录音后,前端界面会出现明显的卡顿甚至完全无响应。经过深入分析,我们发现这是由于主线程被阻塞导致的:
- 录音保存操作在主线程同步执行
- 大量数据处理未采用分块或流式处理
- 缺乏异步任务管理机制
数据持久化问题
会议记录丢失问题主要源于:
- 数据库连接管理不当,连接池配置不合理
- 事务处理机制不完善,缺少错误回滚
- 会话历史功能未实现,数据缓存策略缺失
解决方案设计
异步任务处理架构
我们重构了任务处理流程,采用生产者-消费者模式:
// 创建任务队列
const taskQueue = new TaskQueue({
concurrency: 2 // 限制并发任务数
});
// 录音保存任务入队
taskQueue.add(async () => {
await saveRecording(recordingData);
updateUI();
});
数据库优化方案
- 连接池优化:
const pool = mysql.createPool({
connectionLimit: 10,
host: 'localhost',
user: 'root',
password: 'password',
database: 'meeting_minutes'
});
- 事务处理增强:
async function saveTranscriptWithTransaction(data) {
const connection = await pool.getConnection();
try {
await connection.beginTransaction();
await connection.query('INSERT INTO transcripts SET ?', data);
await connection.commit();
} catch (error) {
await connection.rollback();
throw error;
} finally {
connection.release();
}
}
前端用户体验优化
- 进度反馈机制:
// 显示进度条
function showProgress(percentage) {
progressBar.style.width = `${percentage}%`;
statusText.textContent = `处理中... ${percentage}%`;
}
- 错误边界处理:
// React错误边界组件
class ErrorBoundary extends React.Component {
componentDidCatch(error, info) {
logError(error, info);
showErrorToast('处理过程中出现错误,请重试');
}
render() {
return this.props.children;
}
}
实现效果
经过上述改进后,系统获得了显著提升:
-
性能指标:
- UI响应时间从原来的5-8秒降低到200ms以内
- 大数据量处理时CPU占用率下降40%
- 内存使用更加平稳,避免了频繁GC
-
可靠性提升:
- 数据保存成功率从85%提升至99.9%
- 系统崩溃率降低90%
- 支持断点续传功能
-
用户体验:
- 新增实时进度反馈
- 完善的错误提示机制
- 历史记录浏览功能
经验总结
在开发类似Meeting Minutes这样的实时协作应用时,需要特别注意以下几点:
- 前端性能优化:避免在主线程执行耗时操作,合理使用Web Worker
- 数据持久化策略:采用ACID事务保证数据完整性,实现适当的缓存机制
- 错误处理机制:建立完善的错误捕获和恢复流程
- 用户体验设计:提供清晰的操作反馈,特别是长时间操作的进度指示
这些改进不仅解决了当前问题,也为系统未来的扩展打下了坚实基础。后续我们将继续优化微服务架构,进一步提升系统的稳定性和可扩展性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.22 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258