Apache DataFusion 优化:扩展 TopK 早期终止机制支持部分有序输入
在数据处理系统中,排序和限制(TopK)查询是非常常见的操作模式。Apache DataFusion 作为一个高性能的查询执行引擎,已经实现了针对完全有序输入的 TopK 早期终止优化。然而,在实际业务场景中,数据往往只是部分有序的,这就为性能优化提供了新的可能性。
问题背景
考虑一个典型的时间序列数据分析场景:传感器数据按天分区存储,每天内部的数据按时间戳无序排列。当用户执行类似"按天降序和时间戳降序排序,取前10条记录"的查询时,理想情况下系统只需要扫描最近几天的数据就能确定最终结果,而不需要处理全部历史数据。
当前 DataFusion 的实现存在局限性:只有当输入数据的排序键完全匹配查询要求的排序键时,才能触发早期终止优化。对于部分有序的情况(如数据已按天排序但未按时间戳排序),系统仍然会扫描全部数据并进行完整排序,造成不必要的计算和I/O开销。
技术方案
我们提出了一种扩展的 TopK 早期终止机制,能够识别和处理部分有序的输入数据。该优化的核心思想是:
- 公共前缀检测:分析输入数据的已知排序键与查询要求的排序键之间的公共前缀
- 边界值比较:维护当前 TopK 结果集中的边界值(最大值)
- 早期终止条件:当待处理数据在公共前缀维度上已经不可能产生更优结果时终止扫描
具体实现上,当满足以下条件时可以安全终止处理:
- 输入数据具有与查询排序键部分匹配的排序保证
- TopK 缓冲区已填满
- 剩余数据在公共前缀维度上的值都大于当前结果集中的最大值
性能提升
在实际测试中,这项优化带来了显著的性能改进:
- 在 TPCH 基准测试的特定查询上,执行时间从16秒降低到800毫秒,提升20倍
- 数据扫描量从1.7千万行减少到8万行,降低200倍
- I/O 负载从130MB减少到23MB,降低5倍
更全面的基准测试显示,在多个查询场景下获得了5-11倍的性能提升,而不会对不相关的查询产生负面影响。
应用场景
这项优化特别适用于以下典型场景:
- 时间序列分析:按日期分区但分区内无序的数据
- 日志处理:按日志级别粗粒度排序的日志数据
- 监控系统:按设备分组存储的指标数据
对于这些场景,查询只需要指定比数据现有排序更细粒度的排序条件,就能自动获得性能提升。
技术展望
这项工作的价值不仅限于当前的性能优化,还为未来更多优化开启了可能性:
- 流式结果输出:在排序过程中就可以输出部分确定的结果
- 动态过滤集成:与现有的动态过滤机制协同工作
- 混合排序策略:结合内存和磁盘排序的最佳实践
通过持续优化这些关键路径,DataFusion 能够为更多实时分析场景提供高效支持。
总结
DataFusion 的这项扩展优化展示了如何利用数据本身的特性来提升查询性能。通过识别部分有序模式,系统能够智能地减少不必要的数据处理,在保持结果准确性的同时显著提高效率。这种优化思路也适用于其他数据处理系统,是查询优化器设计的一个典范。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00