Sentence Transformers 训练中处理不定数量负样本的技术探讨
2025-05-13 16:48:31作者:卓艾滢Kingsley
背景介绍
Sentence Transformers 是一个强大的文本嵌入模型框架,广泛应用于语义搜索、问答系统等场景。在实际训练过程中,特别是使用对比学习(Contrastive Learning)方法时,如何处理不定数量的负样本是一个常见的技术挑战。
问题核心
在标准的 Sentence Transformers 训练流程中,模型期望输入数据具有固定的结构。当遇到以下数据结构时会出现问题:
{'anchor':str, 'positive':str, 'negative':list[str]}
其中负样本数量不固定,这会导致数据加载器抛出"unhashable type: 'list'"错误。
技术限制分析
当前版本的 Sentence Transformers 训练框架存在两个主要限制:
-
固定数量负样本要求:框架要求负样本必须以单独的列形式存在,如negative_1、negative_2等,每列包含一个字符串。
-
数据预处理约束:无法直接处理变长列表形式的负样本,因为数据加载器需要对样本进行哈希操作,而列表是不可哈希的类型。
解决方案探讨
方案一:预处理为固定数量负样本
- 对数据进行预处理,选择固定数量的负样本
- 将数据结构转换为:
{'anchor':str, 'positive':str, 'negative_1':str, 'negative_2':str}
- 不足数量的负样本可以用空字符串填充
优点:实现简单,直接兼容现有框架 缺点:会丢失部分负样本信息,可能影响模型性能
方案二:自定义数据加载逻辑
- 继承并修改默认的数据加载器
- 实现处理列表类型负样本的逻辑
- 可能需要重写损失函数以处理变长负样本
优点:保留所有负样本信息 缺点:实现复杂,需要深入理解框架内部机制
未来改进方向
根据项目维护者的反馈,未来的改进可能包括:
- CrossEncoderTrainer 将提供更灵活的数据处理能力
- 可能会在 SentenceTransformerTrainer 中增加对变长负样本的原生支持
- 考虑引入动态负样本丢弃机制,处理数量不匹配的情况
实践建议
对于当前需要处理不定数量负样本的用户,建议:
- 评估负样本数量的分布情况
- 如果大部分样本的负样本数量接近某个固定值,可采用截断+填充方案
- 对于极端情况,考虑分批训练或自定义数据加载逻辑
总结
处理不定数量负样本是 Sentence Transformers 训练中的一个实际挑战。虽然当前版本存在限制,但通过适当的数据预处理或框架扩展,仍然可以找到可行的解决方案。随着框架的演进,这一问题有望得到更优雅的解决。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
265
2.53 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
98
126
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
150
暂无简介
Dart
555
124
React Native鸿蒙化仓库
JavaScript
221
301
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
602
仓颉编程语言测试用例。
Cangjie
34
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.83 K