【亲测免费】 TransFusion:基于Transformer的鲁棒激光雷达-相机融合3D目标检测
2026-01-14 18:54:32作者:段琳惟
项目介绍
在自动驾驶领域,激光雷达(LiDAR)和相机是两种关键的传感器,用于3D目标检测。尽管传感器融合技术在这一领域越来越受欢迎,但对于图像条件较差(如光照不佳和传感器对齐误差)的鲁棒性研究仍然不足。现有的融合方法在这些条件下容易受到影响,主要原因是通过校准矩阵建立的LiDAR点与图像像素之间的硬关联。
为了解决这一问题,我们提出了TransFusion,一种基于Transformer的鲁棒激光雷达-相机融合方法。TransFusion通过软关联机制来处理图像条件较差的情况,结合了卷积主干网络和基于Transformer解码器的检测头。该模型能够自适应地从图像中提取有用的特征,并利用空间和上下文关系进行融合,从而实现鲁棒且有效的融合策略。
项目技术分析
TransFusion的核心技术包括:
- Transformer解码器:通过Transformer的注意力机制,模型能够自适应地决定从图像中提取哪些信息,从而提高融合的鲁棒性。
- 图像引导的查询初始化策略:针对难以在点云中检测到的物体,设计了图像引导的查询初始化策略,进一步提高了检测性能。
- 卷积主干网络:利用卷积神经网络提取LiDAR点云和图像特征,为后续的融合提供基础。
项目及技术应用场景
TransFusion适用于以下场景:
- 自动驾驶:在复杂的道路环境中,如光照变化、天气条件不佳等情况下,提供鲁棒的3D目标检测。
- 机器人导航:在室内外环境中,结合激光雷达和相机数据,实现精确的物体识别和定位。
- 智能监控:在监控系统中,通过融合多传感器数据,提高目标检测的准确性和鲁棒性。
项目特点
- 鲁棒性:通过软关联机制和Transformer的注意力机制,TransFusion在图像条件较差的情况下仍能保持高检测性能。
- 高效性:结合卷积神经网络和Transformer,模型在处理大规模数据时表现出色,适用于实时应用。
- 可扩展性:TransFusion不仅适用于3D目标检测,还扩展到了3D跟踪任务,并在nuScenes跟踪排行榜上取得了第一名。
结语
TransFusion通过创新的软关联机制和Transformer技术,为激光雷达-相机融合的3D目标检测提供了一种鲁棒且高效的解决方案。无论是在自动驾驶、机器人导航还是智能监控领域,TransFusion都能显著提升系统的性能和可靠性。如果你正在寻找一种能够在复杂环境中表现出色的3D目标检测方法,TransFusion无疑是一个值得尝试的选择。
立即访问TransFusion GitHub仓库,开始你的鲁棒3D目标检测之旅吧!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885