ManticoreSearch优化与更新操作的并发性能改进
背景介绍
ManticoreSearch作为一款高性能的全文搜索引擎,在处理大规模数据时经常需要进行数据更新(UPDATE)和索引优化(OPTIMIZE)操作。然而,在实际使用中发现,当这两个操作同时执行时会出现严重的性能问题——更新操作会被优化操作完全阻塞,导致系统响应时间显著增加。
问题现象
通过一个简单的测试用例可以重现这个问题:首先创建一个包含200万条记录的测试表,然后同时执行OPTIMIZE和UPDATE操作。测试结果显示,即使只是更新单条记录,UPDATE操作也需要等待长达12秒才能完成,完全被OPTIMIZE操作阻塞。
更严重的是,这种阻塞还会影响其他查询操作。例如,在OPTIMIZE和UPDATE同时执行期间,简单的SELECT COUNT(*)查询也需要等待11秒才能返回结果,这显然无法满足生产环境对实时性的要求。
技术分析
经过深入分析,发现这个问题源于ManticoreSearch内部的锁机制设计:
-
全局锁争用问题:OPTIMIZE操作会获取表的共享锁,而UPDATE操作需要获取排他锁。当OPTIMIZE操作正在进行时,UPDATE操作必须等待OPTIMIZE释放锁后才能继续执行。
-
属性复制阶段的锁粒度:在合并磁盘块(disk chunks)的过程中,最耗时的属性复制阶段会持有锁。对于非BLOB属性的更新,只需要等待相关块合并完成;但对于BLOB属性的更新,则需要等待所有块合并完成。
-
锁优先级设计:系统当前采用"写优先"的锁策略,当有写操作等待时,后续的读操作也会被阻塞,这是为了防止写操作被大量读操作"饿死"。
解决方案
开发团队针对这个问题提出了分阶段的优化方案:
第一阶段优化:减少BLOB更新的阻塞范围
通过重构OPTIMIZE任务的执行流程,使其不再需要获取全局索引锁。这样BLOB属性的更新只需要等待相关块的合并完成,而不必等待整个OPTIMIZE操作结束。这一优化显著减少了BLOB更新的等待时间。
第二阶段优化:细化合并过程中的锁粒度
在磁盘块合并过程中,进一步优化了属性复制的锁机制:
- 将长时的属性复制操作分解为多个阶段
- 在保证数据一致性的前提下,增加安全检查点
- 允许UPDATE操作在这些安全检查点处执行
这使得即使是大型表的合并操作,也能保持较高的更新响应速度。
性能对比
优化前后的性能对比非常明显:
优化前:
- BLOB更新:等待所有块合并完成(约12秒)
- 非BLOB更新:等待相关块合并完成(约6秒)
第一阶段优化后:
- BLOB更新:仅等待相关块合并完成
- 非BLOB更新:行为不变
第二阶段优化后:
- 所有更新操作:等待时间大幅减少,基本不影响用户体验
实际应用建议
对于ManticoreSearch用户,建议:
- 及时升级到包含此优化的版本(7.0.0及以上)
- 对于高频更新的场景,可以适当调整OPTIMIZE的执行频率
- 监控系统负载,在低峰期执行大规模的OPTIMIZE操作
- 对于实时性要求高的应用,考虑使用分布式架构分散负载
总结
ManticoreSearch通过精细化的锁机制优化,有效解决了UPDATE操作被OPTIMIZE阻塞的问题。这一改进显著提升了系统在高并发场景下的响应能力,使ManticoreSearch更适合需要实时数据更新的应用场景。开发团队将继续关注系统性能优化,为用户提供更出色的搜索体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00