Python-RAKE 项目教程
2024-09-18 00:43:35作者:戚魁泉Nursing
1. 项目介绍
Python-RAKE(Rapid Automatic Keyword Extraction)是一个用于从文本中提取关键词的Python模块。该模块实现了RAKE算法,这是一种领域无关的关键词提取算法,通过分析单词的频率及其在文本中的共现情况来确定关键短语。
主要特点
- 简单易用:模块提供了简单的接口,方便用户快速上手。
- 灵活配置:支持自定义停用词列表和正则表达式。
- 多语言支持:基于Unicode,理论上支持所有语言,但非西方语言的测试较少。
项目来源
该项目是原始python RAKE项目的维护分支,最初由@aneesha开发,后由@tomaspinho打包。当前维护者为@fabianvf。
2. 项目快速启动
安装
首先,使用pip安装python-rake模块:
pip install python-rake
基本使用
以下是一个简单的示例,展示如何使用python-rake从文本中提取关键词:
import RAKE
# 使用默认的停用词列表
rake = RAKE.Rake(RAKE.SmartStopList())
# 要处理的文本
text = "Python-RAKE is a Python module for extracting keywords from text. It uses the RAKE algorithm to determine key phrases."
# 提取关键词
keywords = rake.run(text)
# 输出结果
for keyword, score in keywords:
print(f"Keyword: {keyword}, Score: {score}")
自定义配置
用户可以根据需要自定义停用词列表和正则表达式:
import RAKE
# 自定义停用词列表
custom_stoplist = ["is", "a", "for"]
# 使用自定义停用词列表
rake = RAKE.Rake(custom_stoplist)
# 提取关键词
keywords = rake.run(text)
# 输出结果
for keyword, score in keywords:
print(f"Keyword: {keyword}, Score: {score}")
3. 应用案例和最佳实践
应用案例
- 文本分析:在文本挖掘和自然语言处理任务中,提取关键词可以帮助理解文本的核心内容。
- 搜索引擎优化:通过提取网页内容的关键词,可以优化搜索引擎的排名。
- 文档摘要:自动生成文档摘要时,关键词提取是重要的一步。
最佳实践
- 选择合适的停用词列表:根据具体应用场景选择或自定义停用词列表,以提高关键词提取的准确性。
- 调整参数:根据文本长度和复杂度,适当调整
minCharacters
、maxWords
和minFrequency
参数,以获得最佳效果。
4. 典型生态项目
相关项目
- NLTK:Python的自然语言处理工具包,提供了丰富的文本处理功能,可以与python-rake结合使用。
- spaCy:另一个强大的自然语言处理库,支持多种语言和高级文本分析功能。
- Gensim:用于主题建模和文档相似性分析的Python库,可以与关键词提取结合使用。
集成示例
以下是一个将python-rake与NLTK结合使用的示例:
import RAKE
import nltk
# 下载NLTK的停用词列表
nltk.download('stopwords')
# 使用NLTK的停用词列表
rake = RAKE.Rake(nltk.corpus.stopwords.words('english'))
# 提取关键词
keywords = rake.run(text)
# 输出结果
for keyword, score in keywords:
print(f"Keyword: {keyword}, Score: {score}")
通过结合这些生态项目,可以进一步提升文本处理的效果和应用范围。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511