【亲测免费】 PyTorchTS 使用教程
2026-01-16 09:35:35作者:史锋燃Gardner
项目介绍
PyTorchTS 是一个基于 PyTorch 的概率时间序列预测框架,它利用 GluonTS 作为后端 API,提供了当前最先进的 PyTorch 时间序列模型。该项目旨在为时间序列分析提供一个强大的工具集,支持从数据加载、预处理到模型训练和预测的全流程。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 PyTorchTS:
pip3 install pytorchts
快速示例
以下是一个简单的示例,展示如何使用 PyTorchTS 训练一个模型并进行预测。我们将使用 Twitter 上提到 AMZN 股票的推文数量作为数据集。
import matplotlib.pyplot as plt
import pandas as pd
import torch
from gluonts.dataset.common import ListDataset
from gluonts.dataset.util import to_pandas
from pts.model.deepar import DeepAREstimator
from pts import Trainer
# 加载数据
url = "https://raw.githubusercontent.com/numenta/NAB/master/data/realTweets/Twitter_volume_AMZN.csv"
df = pd.read_csv(url, header=0, index_col=0, parse_dates=True)
# 准备数据集
training_data = ListDataset(
[{"start": df.index[0], "target": df.values}],
freq="5min"
)
# 定义模型
estimator = DeepAREstimator(
freq="5min",
prediction_length=12,
trainer=Trainer(epochs=10)
)
# 训练模型
predictor = estimator.train(training_data=training_data)
# 进行预测
for test_entry in training_data:
future_series = to_pandas(test_entry)
forecast = predictor.predict(test_entry)
future_series[-12:].plot(linewidth=2)
forecast.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')
plt.legend(["observations", "median prediction", "90% prediction interval", "50% prediction interval"])
plt.show()
应用案例和最佳实践
应用案例
PyTorchTS 可以应用于多种时间序列预测场景,包括但不限于:
- 股票价格预测
- 销售量预测
- 网络流量预测
- 能源消耗预测
最佳实践
- 数据预处理:确保数据集经过适当的清洗和标准化处理。
- 模型选择:根据具体任务选择合适的模型,如 DeepAR、LSTNet 或 N-Beats。
- 超参数调优:使用网格搜索或随机搜索进行超参数调优,以获得最佳模型性能。
- 评估指标:使用适当的评估指标(如 MAE、MSE 或 MAPE)来评估模型性能。
典型生态项目
PyTorchTS 作为 PyTorch 生态系统的一部分,与其他项目和工具紧密集成,包括:
- PyTorch Lightning:用于简化深度学习模型的训练和验证。
- GluonTS:提供了一系列时间序列数据处理和模型评估工具。
- TorchServe:用于部署和管理 PyTorch 模型的服务框架。
这些工具和框架共同构成了一个强大的生态系统,支持从模型开发到部署的全流程。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
248
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
451
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885