OpenSSL项目中ML-KEM/ML-DSA算法的关键修复与优化
在OpenSSL项目中,随着ML-KEM和ML-DSA算法的合并,开发团队识别并解决了一系列关键问题。这些修复不仅涉及测试框架的调整,还包括算法实现的优化和配置管理的改进。以下是这些修复的详细技术分析。
测试框架的调整
测试框架的调整主要集中在确保ML-DSA算法在不同构建配置下的正确性。具体包括:
-
测试文件的重定位:将ML-DSA的测试文件从默认测试列表中移出,转而纳入同时测试FIPS和默认配置的列表中。这一调整确保了测试的全面性,覆盖了不同配置下的算法行为。
-
CI配置的更新:更新了CI配置文件,增加了
no-ml-dsa选项,以支持在禁用ML-DSA的情况下进行构建和测试。这一变更确保了构建系统的灵活性,能够适应不同的用户需求。 -
SSL测试的修复:修复了在禁用ML-DSA时
test_ssl_new测试失败的问题。通过将no-ml-dsa添加到批量排除列表中,并优化生成的SSL测试文件检查逻辑,确保了测试的稳定性和一致性。
算法实现的优化
在算法实现方面,团队对ML-KEM和ML-DSA进行了多项优化:
-
EVP测试的改进:移除了ML-KEM实现中自定义字段的使用,转而采用标准的控制机制。这一变更使得代码更加规范,减少了潜在的错误来源。
-
字符串比较的优化:在
t1_lib.c文件中,将字符串比较改为不区分大小写,提升了代码的健壮性和兼容性。 -
算法别名的添加:为ML-KEM添加了OID长名称作为算法别名,提高了算法的可识别性和易用性。
配置管理的增强
配置管理方面的改进主要包括:
-
批量禁用功能的扩展:在Configure脚本中增加了对ML-KEM的批量禁用支持,使得用户能够更方便地管理算法启用状态。
-
导入时间PCT的可配置性:实现了导入时间PCT(Probabilistic Checkable Testing)的可配置性,为用户提供了更大的灵活性,可以根据实际需求调整测试强度。
总结
通过这些修复和优化,OpenSSL项目不仅提升了ML-KEM和ML-DSA算法的稳定性和可靠性,还增强了构建和测试系统的灵活性。这些变更体现了开发团队对代码质量和用户体验的持续关注,为后续的功能扩展和维护奠定了坚实的基础。对于开发者而言,理解这些变更背后的技术细节,将有助于更好地利用OpenSSL的强大功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00