OpenSSL项目中ML-KEM/ML-DSA算法的关键修复与优化
在OpenSSL项目中,随着ML-KEM和ML-DSA算法的合并,开发团队识别并解决了一系列关键问题。这些修复不仅涉及测试框架的调整,还包括算法实现的优化和配置管理的改进。以下是这些修复的详细技术分析。
测试框架的调整
测试框架的调整主要集中在确保ML-DSA算法在不同构建配置下的正确性。具体包括:
-
测试文件的重定位:将ML-DSA的测试文件从默认测试列表中移出,转而纳入同时测试FIPS和默认配置的列表中。这一调整确保了测试的全面性,覆盖了不同配置下的算法行为。
-
CI配置的更新:更新了CI配置文件,增加了
no-ml-dsa选项,以支持在禁用ML-DSA的情况下进行构建和测试。这一变更确保了构建系统的灵活性,能够适应不同的用户需求。 -
SSL测试的修复:修复了在禁用ML-DSA时
test_ssl_new测试失败的问题。通过将no-ml-dsa添加到批量排除列表中,并优化生成的SSL测试文件检查逻辑,确保了测试的稳定性和一致性。
算法实现的优化
在算法实现方面,团队对ML-KEM和ML-DSA进行了多项优化:
-
EVP测试的改进:移除了ML-KEM实现中自定义字段的使用,转而采用标准的控制机制。这一变更使得代码更加规范,减少了潜在的错误来源。
-
字符串比较的优化:在
t1_lib.c文件中,将字符串比较改为不区分大小写,提升了代码的健壮性和兼容性。 -
算法别名的添加:为ML-KEM添加了OID长名称作为算法别名,提高了算法的可识别性和易用性。
配置管理的增强
配置管理方面的改进主要包括:
-
批量禁用功能的扩展:在Configure脚本中增加了对ML-KEM的批量禁用支持,使得用户能够更方便地管理算法启用状态。
-
导入时间PCT的可配置性:实现了导入时间PCT(Probabilistic Checkable Testing)的可配置性,为用户提供了更大的灵活性,可以根据实际需求调整测试强度。
总结
通过这些修复和优化,OpenSSL项目不仅提升了ML-KEM和ML-DSA算法的稳定性和可靠性,还增强了构建和测试系统的灵活性。这些变更体现了开发团队对代码质量和用户体验的持续关注,为后续的功能扩展和维护奠定了坚实的基础。对于开发者而言,理解这些变更背后的技术细节,将有助于更好地利用OpenSSL的强大功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00