在lm-evaluation-harness中使用自定义HuggingFace模型的方法
2025-05-26 15:39:04作者:薛曦旖Francesca
在自然语言处理领域,EleutherAI开发的lm-evaluation-harness是一个广泛使用的语言模型评估工具包。本文将详细介绍如何在该工具包中使用自定义的HuggingFace模型进行评测。
核心功能实现
lm-evaluation-harness通过HFLM类提供了对HuggingFace模型的原生支持。这个封装器允许用户直接加载已经实例化的HuggingFace模型,而不需要从模型名称重新加载。
基本使用方法如下:
import transformers
import lm_eval
# 首先加载HuggingFace模型
model = transformers.AutoModelForCausalLM.from_pretrained("your-model-name")
# 然后封装为HFLM进行评估
results = lm_eval.simple_evaluate(
    model=lm_eval.models.huggingface.HFLM(model)
)
高级应用场景
1. 使用自定义分词器
当模型需要特殊的分词器时,可以同时传入模型和分词器:
model = transformers.AutoModelForCausalLM.from_pretrained("your-model")
tokenizer = transformers.AutoTokenizer.from_pretrained("your-tokenizer")
results = lm_eval.simple_evaluate(
    model=lm_eval.models.huggingface.HFLM(
        pretrained=model,
        tokenizer=tokenizer,
    )
)
2. 集成优化模型
对于经过优化的模型如unsloth,同样可以使用这种方法:
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="unsloth/llama-3-8b-Instruct-bnb-4bit",
    max_seq_length=8192,
    load_in_4bit=True,
)
results = lm_eval.simple_evaluate(
    model=lm_eval.models.huggingface.HFLM(
        pretrained=model,
        tokenizer=tokenizer,
    )
)
技术实现细节
HFLM类的设计采用了适配器模式,将HuggingFace的模型接口适配到lm-evaluation-harness的评估框架中。这种设计有以下几个优点:
- 灵活性:支持任何继承自PreTrainedModel的HuggingFace模型
 - 效率:避免重复加载已经实例化的模型
 - 兼容性:保持与原有评估流程的无缝衔接
 
最佳实践建议
- 对于大型模型,建议先单独加载模型和分词器,确认能正常运行后再进行封装评估
 - 注意模型与分词器的版本兼容性
 - 评估前确保模型处于eval模式
 - 对于量化模型,检查评估指标是否受到量化影响
 
通过这种集成方式,研究人员可以方便地将各种定制化的HuggingFace模型纳入标准化的评估流程,确保结果的可比性和可重复性。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445