Optax项目中SGD优化器Nesterov动量公式的修正分析
2025-07-07 10:58:44作者:明树来
概述
在深度学习优化算法中,随机梯度下降(SGD)配合Nesterov动量是一种广泛使用的优化技术。Optax作为Google DeepMind开发的优化库,其实现需要确保数学公式的准确性。本文分析并修正了Optax文档中关于SGD with Nesterov动量的数学伪代码描述错误。
原问题描述
Optax文档中原有的SGD with Nesterov动量伪代码存在两个主要问题:
- 当
nesterov=False时,动量项m_t存在循环定义的问题 - 动量项
m_t本身的定义公式不正确
数学公式修正
正确的数学表达应该遵循Sutskever等人2013年提出的Nesterov动量公式。经过变量替换(m_t = -v_t/epsilon和alpha_t = epsilon),可以得到两种等效的正确表达形式:
第一种形式:
m_t = μ * m_{t-1} + g_t
x_t = x_{t-1} - ε * (μ * m_t + g_t) # 当nesterov=True时
x_t = x_{t-1} - ε * m_t # 当nesterov=False时
第二种形式:
m_t = μ * m_{t-1} + g_t
x_t = x_{t-1} - ε * (μ * m_t + g_t) # 当nesterov=True时
x_t = x_{t-1} - ε * (μ * m_{t-1} + g_t) # 当nesterov=False时
技术背景
Nesterov动量是标准动量方法的一个改进版本,其核心思想是"前瞻性"更新。与标准动量不同,Nesterov动量先根据当前动量方向进行部分更新,然后在该位置计算梯度,最后完成完整更新。这种方法可以带来更好的收敛性能,特别是在深度学习模型的训练中。
在实现上,Nesterov动量的计算可以分为两个阶段:
- 中间更新:基于当前动量方向进行部分更新
- 梯度计算:在中间位置计算梯度
- 完整更新:结合中间梯度和动量完成参数更新
修正意义
这一修正确保了:
- 数学描述的准确性,与原始论文一致
- 实现与文档描述的一致性
- 用户对算法行为的正确理解
对于使用Optax库的研究人员和工程师来说,正确的数学描述有助于他们更好地理解算法行为,进行有效的超参数调优,并在必要时进行算法定制。
结论
数学公式的准确性对于优化算法的理解和实现至关重要。Optax团队及时响应并修正了这一描述错误,维护了库的可靠性和权威性。这一修正也提醒我们,在使用开源库时,应当仔细核对其数学描述与原始论文的一致性,以确保对算法行为的正确理解。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178