首页
/ openpilot在低速高曲率场景下的转向控制异常分析

openpilot在低速高曲率场景下的转向控制异常分析

2025-04-30 06:52:11作者:裴锟轩Denise

问题现象

在openpilot自动驾驶系统中,当车辆在低速行驶状态下遇到高曲率道路时,系统会出现一个异常现象:方向盘会持续保持最大左转角度,这种状态可能持续长达一分钟左右。这种情况在丰田车型上表现得尤为明显。

技术背景

openpilot的转向控制系统依赖于神经网络(NP)模型输出的道路曲率预测。在正常情况下,系统会根据预测的曲率计算出适当的转向角度,并通过控制模块实现平稳转向。然而,在特定条件下,这个控制链条可能出现异常。

根本原因分析

经过技术团队深入调查,发现问题的根源在于:

  1. 低速状态下的模型输出特性:当车辆处于低速行驶时,NP模型会输出异常大的道路曲率值。这与高速状态下的模型行为形成鲜明对比。

  2. 控制系统的响应机制:控制系统中的jerk(急动度)限制模块会将这些异常高的曲率值保持在极高水平。jerk限制原本是为了保证转向平顺性而设计的,但在这种情况下反而加剧了问题。

  3. 丰田车型的特殊性:丰田车型的转向系统对这类异常输入特别敏感,导致方向盘长时间保持在最大转向位置。

解决方案

技术团队通过以下方式解决了这个问题:

  1. 模型输出修正:对NP模型在低速状态下的输出进行了调整,避免产生过大的曲率预测值。

  2. 控制逻辑优化:改进了jerk限制模块的处理逻辑,确保在接收到异常曲率值时能够正确地进行限制和平滑处理。

技术启示

这个案例展示了自动驾驶系统中几个重要的技术考量:

  1. 模型在不同工况下的表现差异:神经网络模型在不同速度区间的表现可能存在显著差异,需要进行针对性的测试和调整。

  2. 控制系统的鲁棒性:控制算法需要能够处理模型可能输出的各种异常值,保证系统的安全性和稳定性。

  3. 车型适配的重要性:同一套自动驾驶系统在不同车型上可能表现出不同的行为,需要进行充分的车型适配工作。

总结

openpilot团队通过分析低速高曲率场景下的转向异常,不仅解决了特定车型的问题,还完善了整个系统的异常处理机制。这种持续改进的过程体现了自动驾驶系统开发的复杂性和专业性,也展示了技术团队对系统安全性和稳定性的高度重视。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
514
3.69 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
873
538
pytorchpytorch
Ascend Extension for PyTorch
Python
316
360
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
333
152
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.31 K
732
flutter_flutterflutter_flutter
暂无简介
Dart
757
182
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.05 K
519